
MATLAB® Compiler™
User's Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ User's Guide
© COPYRIGHT 1995–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
November 2004 Online only Revised for Version 4.1.1 (Release 14SP1+)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)
September 2007 Seventh printing Revised for Version 4.7 (Release 2007b)
March 2008 Online only Revised for Version 4.8 (Release 2008a)
October 2008 Online only Revised for Version 4.9 (Release 2008b)
March 2009 Online only Revised for Version 4.10 (Release 2009a)
September 2009 Online only Revised for Version 4.11 (Release 2009b)
March 2010 Online only Revised for Version 4.13 (Release 2010a)
September 2010 Online only Revised for Version 4.14 (Release 2010b)
April 2011 Online only Revised for Version 4.15 (Release 2011a)
September 2011 Online only Revised for Version 4.16 (Release 2011b)
March 2012 Online only Revised for Version 4.17 (Release 2012a)
September 2012 Online only Revised for Version 4.18 (Release 2012b)
March 2013 Online only Revised for Version 4.18.1 (Release 2013a)
September 2013 Online only Revised for Version 5.0 (Release 2013b)
March 2014 Online only Revised for Version 5.1 (Release 2014a)
October 2014 Online only Revised for Version 5.2 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online Only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release R2017a)
September 2017 Online only Revised for Version 6.5 (Release R2017b)
March 2018 Online only Revised for Version 6.6 (Release R2018a)
September 2018 Online only Revised for Version 7.0 (Release R2018b)
March 2019 Online only Revised for Version 7.0.1 (Release R2019a)
September 2019 Online only Revised for Version 7.1 (Release R2019b)
March 2020 Online only Revised for Version 8.0 (Release R2020a)

Getting Started
1

MATLAB Compiler Product Description . 1-2

Appropriate Tasks for MATLAB Compiler Products 1-3

Create Standalone Application from MATLAB . 1-5
Create Function in MATLAB . 1-5
Create Standalone Application Using Application Compiler App 1-5
Install and Run MATLAB Generated Standalone Application 1-7

MATLAB Runtime Additional Info
2

Differences Between MATLAB and MATLAB Runtime 2-2

Performance Considerations and the MATLAB Runtime 2-3

Deploying Standalone Applications
3

Create Standalone Application from Command Line 3-2
Execute Compiler Projects with deploytool . 3-2
Create Standalone Application with mcc . 3-2
Run MATLAB Generated Standalone Application . 3-3
Differences Between Compiler Apps and Command Line 3-3

Standalone Applications and Arguments . 3-5
Overview . 3-5
Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables

. 3-5
Run Standalone Applications that Use Arguments 3-5

Use Parallel Computing Toolbox in Deployed Applications 3-8
Pass Parallel Computing Toolbox Profile at Run Time 3-8
Embed Parallel Computing Toolbox Profile . 3-9

Integrate Application with Mac OS X Finder . 3-10
Overview . 3-10

v

Contents

Installing the Mac Application Launcher Preference Pane 3-10
Configuring the Installation Area . 3-10
Running the Application . 3-12

Files Generated After Packaging MATLAB Functions 3-14
for_redistribution Folder . 3-14
for_redistribution_files_only Folder . 3-14
for_testing Folder . 3-14

Customizing a Compiler Project
4

Customize an Application . 4-2
Customize the Installer . 4-2
Determine Data Type of Command-Line Input (For Packaging Standalone

Applications Only) . 4-4
Manage Required Files in Compiler Project . 4-4
Sample Driver File Creation . 4-5
Specify Files to Install with Application . 4-6
Additional Runtime Settings . 4-7

Manage Support Packages . 4-9
Using a Compiler App . 4-9
Using the Command Line . 4-9

MATLAB Code Deployment
5

How Does MATLAB Deploy Functions? . 5-2

Dependency Analysis . 5-3
Function Dependency . 5-3
Data File Dependency . 5-3

MEX-Files, DLLs, or Shared Libraries . 5-4

Deployable Archive . 5-5
Additional Details . 5-6

Write Deployable MATLAB Code . 5-8
Packaged Applications Do Not Process MATLAB Files at Run Time 5-8
Do Not Rely on Changing Directory or Path to Control the Execution of

MATLAB Files . 5-9
Use isdeployed Functions To Execute Deployment-Specific Code Paths . . . 5-9
Gradually Refactor Applications That Depend on Noncompilable Functions

. 5-9
Do Not Create or Use Nonconstant Static State Variables 5-9
Get Proper Licenses for Toolbox Functionality You Want to Deploy 5-10

vi Contents

Calling Shared Libraries in Deployed Applications 5-11

MATLAB Data Files in Compiled Applications . 5-12
Explicitly Including MATLAB Data files Using the %#function Pragma . . 5-12
Load and Save Functions . 5-12

Standalone Application Creation
6

Dependency Analysis Function and User Interaction with the Compilation
Path . 6-2

addpath and rmpath in MATLAB . 6-2
Passing -I <directory> on the Command Line . 6-2
Passing -N and -p <directory> on the Command Line 6-2

Deployment Process
7

About the MATLAB Runtime . 7-2
How is the MATLAB Runtime Different from MATLAB? 7-2
Performance Considerations and the MATLAB Runtime 7-2

Install and Configure the MATLAB Runtime . 7-3
Download the MATLAB Runtime Installer from the Web 7-3
Install the MATLAB Runtime Interactively . 7-3
Install the MATLAB Runtime Non-Interactively . 7-4
Install the MATLAB Runtime without Administrator Rights 7-6
Multiple MATLAB Runtime Versions on Single Machine 7-6
MATLAB and MATLAB Runtime on Same Machine 7-6
Uninstall MATLAB Runtime . 7-7

Run Applications Using a Network Installation of MATLAB Runtime
(Windows Only) . 7-9

MATLAB Runtime on Big Data Platforms . 7-10
Cloudera . 7-10
Apache Ambari . 7-10
Azure HDInsight . 7-10

Work with the MATLAB Runtime
8

MATLAB Runtime Startup Options . 8-2
Set MATLAB Runtime Options . 8-2

vii

Using the MATLAB Runtime User Data Interface . 8-4
MATLAB Functions . 8-4
Set and Retrieve MATLAB Runtime Data for Shared Libraries 8-4

Display the MATLAB Runtime Initialization Messages 8-6
Best Practices . 8-6

Distributing Code to an End User
9

Distribute MATLAB Code Using the MATLAB Runtime 9-2
MATLAB Runtime . 9-2

Compiler Commands
10

Compiler Tips . 10-2
Deploying Applications That Call the Java Native Libraries 10-2
Using the VER Function in a Compiled MATLAB Application 10-2

Standalone Applications
11

Deploying Standalone Applications . 11-2
Compiling the Application . 11-2
Testing the Application . 11-2
Deploying the Application . 11-3
Running the Application . 11-4

Troubleshooting
12

Testing Failures . 12-2

Investigate Deployed Application Failures . 12-4

viii Contents

Limitations and Restrictions
13

Limitations . 13-2
Packaging MATLAB and Toolboxes . 13-2
Fixing Callback Problems: Missing Functions . 13-2
Finding Missing Functions in a MATLAB File . 13-4
Suppressing Warnings on the UNIX System . 13-4
Cannot Use Graphics with the -nojvm Option . 13-4
Cannot Create the Output File . 13-4
No MATLAB File Help for Packaged Functions . 13-4
No MATLAB Runtime Versioning on Mac OS X . 13-5
Older Neural Networks Not Deployable with MATLAB Compiler 13-5
Restrictions on Calling PRINTDLG with Multiple Arguments in Packaged

Mode . 13-5
Packaging a Function with which Does Not Search Current Working Folder

. 13-5
Restrictions on Using C++ SetData to Dynamically Resize an mwArray

. 13-6
Accepted File Types for Packaging . 13-6

Functions Not Supported for Compilation by MATLAB Compiler and
MATLAB Compiler SDK . 13-7

Reference Information
14

MATLAB Runtime Path Settings for Run-Time Deployment 14-2
General Path Guidelines . 14-2
Path for Java Applications on All Platforms . 14-2
Windows Path for Run-Time Deployment . 14-2
Linux Paths for Run-Time Deployment . 14-3
OS X Paths for Run-Time Deployment . 14-3

MATLAB Compiler Licensing . 14-4
Using MATLAB Compiler Licenses for Development 14-4

Deployment Product Terms . 14-5

ix

Functions
15

MATLAB Compiler Quick Reference
A

mcc Command Arguments Listed Alphabetically . A-2

mcc Command Line Arguments Grouped by Task A-4

Using MATLAB Compiler on Mac or Linux
B

Problems Setting MATLAB Runtime Paths . B-2
Running SETENV on Mac Failed . B-2
Mac Application Fails with “Library not loaded” or “Image not found” . . . B-2

Apps
16

x Contents

Getting Started

• “MATLAB Compiler Product Description” on page 1-2
• “Appropriate Tasks for MATLAB Compiler Products” on page 1-3
• “Create Standalone Application from MATLAB” on page 1-5

1

MATLAB Compiler Product Description
Build standalone executables and web apps from MATLAB programs

MATLAB Compiler enables you to share MATLAB programs as standalone applications and web apps.
With MATLAB Compiler you can also package and deploy MATLAB programs as MapReduce and
Spark™ big data applications and as Microsoft® Excel® add-ins. End users can run your applications
royalty-free using MATLAB Runtime.

To provide browser-based access to your MATLAB web apps, you can host them using the
development version of MATLAB Web App Server included with MATLAB Compiler. MATLAB
programs can be packaged into software components for integration with other programming
languages (with MATLAB Compiler SDK™). Large-scale deployment to enterprise systems is
supported through MATLAB Production Server™.

1 Getting Started

1-2

Appropriate Tasks for MATLAB Compiler Products
MATLAB Compiler generates standalone applications and Excel add-ins. MATLAB Compiler SDK
generates C/C++ shared libraries, deployable archives for use with MATLAB Production Server,
Java® packages, .NET assemblies, and COM components.

While MATLAB Compiler and MATLAB Compiler SDK let you run your MATLAB application outside
the MATLAB environment, it is not appropriate for all external tasks you may want to perform. Some
tasks require other products or MATLAB external interfaces. Use the following table to determine if
MATLAB Compiler or MATLAB Compiler SDK is appropriate to your needs.

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Package
MATLAB
applications for
deployment to
users who do
not have
MATLAB

■

Package
MATLAB
applications for
deployment to
MATLAB
Production
Server

■

Build non-
MATLAB
applications
that include
MATLAB
functions

■

Generate
readable and
portable C/C++
code from
MATLAB code

 ■

Generate MEX
functions from
MATLAB code
for code
verification and
acceleration.

 ■

Integrate
MATLAB code
into Simulink

 ■

 Appropriate Tasks for MATLAB Compiler Products

1-3

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Generate
hardware
description
language (HDL)
from MATLAB
code

 ■

Integrate
custom C code
into MATLAB
with MEX files

 ■

Call MATLAB
from C and
Fortran
programs

 ■

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB Coder Simulink HDL Coder MATLAB
External
Interfaces

Note Components generated by MATLAB Compiler and MATLAB Compiler SDK cannot be used in
the MATLAB environment.

For information on MATLAB Coder, see “MATLAB Coder”.

For information on Simulink, see “Simulink”.

For information on HDL Coder, see “HDL Coder”.

For information on MATLAB external interfaces, see “Calling MATLAB from Other Languages”
(MATLAB).

1 Getting Started

1-4

Create Standalone Application from MATLAB
Supported platform: Windows®, Linux®, Mac

This example shows how to generate a standalone application from MATLAB. You package the
prewritten function that prints a magic square to the command prompt of a computer. MATLAB
Compiler produces an installer that installs both the standalone application and all the required
dependencies on a target system. The target system does not require a licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want deployed as a standalone application. For this
example, open magicsquare.m located in matlabroot\extern\examples\compiler.

function m = magicsquare(n)

if ischar(n)
 n=str2double(n);
end
m = magic(n)

At the MATLAB command prompt, enter magicsquare(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Standalone Application Using Application Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Application Compiler.

Alternately, you can open the Application Compiler app by entering applicationCompiler at
the MATLAB prompt.

2 In the MATLAB Compiler project window, specify the main file of the MATLAB application that
you want to deploy.

a
In the Main File section of the toolstrip, click .

b In the Add Files window, browse to matlabroot\extern\examples\compiler, and
select magicsquare.m. Click Open.

 Create Standalone Application from MATLAB

1-5

The function magicsquare.m is added to the list of main files.
3 Decide whether to include the MATLAB Runtime installer in the generated application by

selecting one of the two options in the Packaging Options section:

• Runtime downloaded from web — Generates an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application.

• Runtime included in package — Generates an installer that includes the MATLAB Runtime
installer.

4 Customize the packaged application and its appearance:

• Application information — Editable information about the deployed application. You can
also customize the standalone applications appearance by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer” on page 4-2.

1 Getting Started

1-6

• Command line input type options — Selection of input data types for the standalone
application. For more information, see “Determine Data Type of Command-Line Input (For
Packaging Standalone Applications Only)” on page 4-4.

• Additional installer options — Edit the default installation path for the generated installer
and selecting custom logo. See “Change the Installation Path” on page 4-3 .

• Files required for your application to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project” on page 4-4.

• Files installed for your end user — Files that are installed with your application. These
files include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application” on page 4-6.
• Additional runtime settings — Platform-specific options for controlling the generated

executable. See “Additional Runtime Settings” on page 4-7.
5 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
6 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For further information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions” on page 3-14.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Install and Run MATLAB Generated Standalone Application
1 To install the standalone application, in the for_redistribution folder, double-click the

MyAppInstaller_web executable.

Note The file extension varies depending on the platform on which the installer was generated.
2 If you want to connect to the Internet using a proxy server, click Connection Settings. Enter

the proxy server settings in the provided window. Click OK.

To complete installation, follow the instructions on the user interface.

Note On Linux and Mac OS X, you do not have the option of adding a desktop shortcut.
3 To run your standalone application:

a Open a terminal window.
b Navigate to the folder into which you installed the application.

If you accepted the default settings, you can find the folder in one of the following locations:

 Create Standalone Application from MATLAB

1-7

Windows C:\Program Files\magicsquare
Mac OS X /Applications/magicsquare
Linux /usr/magicsquare

c Run the application using one of the following commands:

Windows application\magicsquare 5
Mac OS X You must set the DYLD_LIBRARY_PATH

environment variable in the command
window for the standalone application to
work as follows:

$export DYLD_LIBRARY_PATH =
MCR_ROOT/v92/runtime/
maci64:MCR_ROOT/v92/sys/os/
maci64:MCR_ROOT/v92/bin/maci64

Now run the application:
./magicsquare.app/Contents/
MacOS/magicsquare 5

Linux ./magicsquare 5

A 5-by-5 magic square is displayed in the console:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

See Also
applicationCompiler | deploytool | mcc

More About
• Application Compiler

1 Getting Started

1-8

MATLAB Runtime Additional Info

2

Differences Between MATLAB and MATLAB Runtime
The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the version of the

MATLAB Runtime associated with the version of MATLAB Compiler SDK with which it was
created. For example, if you compiled an application using version 6.3 (R2016b) of MATLAB
Compiler, users who do not have MATLAB installed must have version 9.1 of the MATLAB Runtime
installed. Use mcrversion to return the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed. To change
them, you must first customize them within MATLAB.

2 MATLAB Runtime Additional Info

2-2

Performance Considerations and the MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use the MATLAB
programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language, including the
Java programming language, starting a compiled application takes approximately the same amount of
time as starting MATLAB. The amount of resources consumed by the MATLAB Runtime is necessary
in order to retain the power and functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are threadsafe. This
can impact performance.

 Performance Considerations and the MATLAB Runtime

2-3

Deploying Standalone Applications

3

Create Standalone Application from Command Line
You can package standalone applications at the MATLAB prompt or your system prompt using either
of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Create Standalone Application with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the command
prompt and provides fine-level control while packaging the application. It does not package the
results in an installer.

To invoke the compiler to generate an application, use mcc with either the -m or the -e flag. Both
flags package a MATLAB function and generate a standalone executable. The -m flag creates a
standard executable that runs at a system command line. On Windows, the -e flag generates an
executable that does not open a command prompt when double-clicked from Windows file explorer.

Use the following mcc options to package standalone applications.

Option Description
-W main -T link:exe Generate a standard executable equivalent to

using -m.
-W WinMain -T link:exe Generate an executable that does not open a

command prompt when double-clicked from
Windows file explorer. It is equivalent to using -
e.

-a filePath Add any files on the path to the generated
binaries.

-d outFolder Specify the folder for the packaged applications.
-o fileName Specify the name of the generated executable

file.

3 Deploying Standalone Applications

3-2

Run MATLAB Generated Standalone Application
To run your standalone application:

1 Open a terminal window.
2 Navigate to the folder into which you packaged your standalone application.
3 Run the application using one of the following commands:

Windows magicsquare 5
Mac OS X You must set the DYLD_LIBRARY_PATH

environment variable in the command
window for the standalone application to
work as follows:

$export DYLD_LIBRARY_PATH =
MCR_ROOT/v92/runtime/
maci64:MCR_ROOT/v92/sys/os/
maci64:MCR_ROOT/v92/bin/maci64

Now run the application:
./magicsquare.app/Contents/MacOS/
magicsquare 5

Linux ./magicsquare 5

A 5-by-5 magic square is displayed in the console:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are
customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

 Create Standalone Application from Command Line

3-3

See Also
deploytool | mcc

More About
• “Create Standalone Application from MATLAB” on page 1-5

3 Deploying Standalone Applications

3-4

Standalone Applications and Arguments

In this section...
“Overview” on page 3-5
“Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables” on page 3-5
“Run Standalone Applications that Use Arguments” on page 3-5

Overview
You can create a standalone to run the application without passing or retrieving any arguments to or
from it.

However, arguments can be passed to standalone applications created using MATLAB Compiler in the
same way that input arguments are passed to any console-based application.

The following are example commands used to execute an application called filename from Windows
or Linux command prompt with different types of input arguments.

Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables
To Pass.... Use This Syntax.... Notes
A file named helpfile filename helpfile
Numbers or letters filename 1 2 3 a b c Do not use commas or other

separators between the
numbers and letters you pass.

Matrices as input filename "[1 2 3]" "[4 5
6]"

Place double quotes around
input arguments to denote a
blank space.

MATLAB variables for k=1:10
cmd = ['filename ',num2str(k)];
system(cmd);
end

To pass a MATLAB variable to a
program as input, you must first
convert it to a character vector.

Run Standalone Applications that Use Arguments
You call a standalone application that uses arguments from MATLAB with any of the following
commands:

• SYSTEM
• DOS
• UNIX
• !

To pass the contents of a MATLAB variable to the program as an input, the variable must first be
converted to a character vector. For example:

 Standalone Applications and Arguments

3-5

Using SYSTEM, DOS, or UNIX

Specify the entire command to run the application as a character vector (including input arguments).
For example, passing the numbers and letters 1 2 3 a b c could be executed using the SYSTEM
command, as follows:

system('filename 1 2 3 a b c')

Using the ! (Bang) Operator

You can also use the ! (bang) operator, from within MATLAB, as follows:

!filename 1 2 3 a b c

When you use the ! (bang) operator, the remainder of the input line is interpreted as the SYSTEM
command, so it is not possible to use MATLAB variables.

Using a Windows System

To run a standalone application by double-clicking it, you create a batch file that calls the standalone
application with the specified input arguments. For example:

 rem This is main.bat file which calls
 rem filename.exe with input parameters

 filename "[1 2 3]" "[4 5 6]"
 @echo off
 pause

The last two lines of code in main.bat are added so that the window displaying your output stays
open until you press a key.

Once you save this file, you run your code with the arguments specified above by double clicking the
icon for main.bat.

Using a MATLAB File You Plan to Deploy

When running MATLAB files that use arguments that you also plan to deploy with MATLAB Compiler,
keep the following in mind:

• The input arguments you pass to your executable from a system prompt are received as character
vector input. Thus, if you expect the data in a different format (for example, double), you must first
convert the character vector input to the required format in your MATLAB code. For example, you
can use STR2NUM to convert the character vector input to numerical data.

• You cannot return values from your standalone application to the user. The only way to return
values from compiled code is to either display it on the screen or store it in a file.

In order to have data displayed back to the screen, do one of the following:

• Unsuppress the commands that yield your return data. Do not use semicolons to unsuppress.
• Use the DISP command to display the variable value, then redirect the outputs to other

applications using redirects (the > operator) or pipes (||) on non-Windows systems.

Taking Input Arguments and Displaying to a Screen Using a MATLAB File

Here are two ways to use a MATLAB file to take input arguments and display data to the screen:

3 Deploying Standalone Applications

3-6

Method 1

function [x,y]=foo(z);

if ischar(z)
z=str2num(z);
else
z=z;
end
x=2*z
y=z^2;
disp(y)

Method 2

function [x,y]=foo(z);

if isdeployed
z=str2num(z);
end
x=2*z
y=z^2;
disp(y)

 Standalone Applications and Arguments

3-7

Use Parallel Computing Toolbox in Deployed Applications
In this section...
“Pass Parallel Computing Toolbox Profile at Run Time” on page 3-8
“Embed Parallel Computing Toolbox Profile” on page 3-9

There are three ways to pass a cluster profile to a standalone application that uses the Parallel
Computing Toolbox:

1 Save the cluster profile to your MATLAB preferences.

The cluster profile will be automatically bundled with the generated application and available to
the Parallel Computing Toolbox code.

2 Pass the cluster profile location to the application at run time.

This option is useful if your application is run against different clusters.
3 Embed the cluster profile in the application.

Pass Parallel Computing Toolbox Profile at Run Time
You can deploy standalone application in a cluster environment using the Parallel Computing Toolbox
by passing the cluster profile to the compiled application at run time.

To deploy a standalone application written with Parallel Computing Toolbox:

1 In the Home tab, in the Environment section, select Parallel > Manage Cluster Profiles.
2 In the Cluster Profile Manager dialog, select a profile, and in the Manage section, click

Export.
3 package the application.

Note If you are using the GPU feature of Parallel Computing Toolbox, you need to add the PTX
and CU files.

4 Write a shell script that calls the application using the -mcruserdata
ParallelProfile:profile flag.

myApp -mcruserdata ParallelProfile:C:\myprofile.settings

Use the full path name for the cluster profile file to specify profile.
5 Distribute the following files to application users:

• Generated installer
• Cluster profile
• Script that starts the application using the cluster profile

Users of the application must have access to the cluster specified in the profile.

Note As of R2012a, Parallel Configurations and MAT files have been replaced with Parallel
Profiles. For more information, see the release notes for the Deployment products and Parallel
Computing Toolbox.

3 Deploying Standalone Applications

3-8

To use existing MAT files and ensure backward compatibility with this change, issue a command
such as the following, in the above example:
pct_Compiled.exe 200 -mcruserdata
 ParallelProfile:C:\work9b\pctdeploytool\pct_Compiled\distrib\myconfig.mat

If you continue to use MAT files, remember to specify the full path to the MAT file.

Embed Parallel Computing Toolbox Profile
You can deploy standalone applications in a cluster environment using Parallel Computing Toolbox by
including the cluster profile with the compiled application.

You can use the default configuration from settings. The steps are similar to using a standard
compiled application with the following additional steps.

To deploy a standalone application written with Parallel Computing Toolbox:

1 Write a MATLAB function that uses setmcruserdata to load the cluster profile and pass it to
the MATLAB Runtime.

function run_parallel_funct
setmcruserdata('ParallelProfile', 'profile')
a = parallel_funct
end

2 In the Home tab, in the Environment section, select Parallel > Manage Cluster Profiles.
3 In the Cluster Profile Manager dialog, select a profile, and in the Manage section, click

Export.

The saved cluster profile should match the profile value in setmcruserdata.
4 Package the application.

a Use the run_parallel_funct as the main file for the application.
b In the Files required for your application to run field of the Application Compiler app,

include the cluster profile and the MATLAB function for parallel_funct.

If you are using the GPU feature of Parallel Computing Toolbox, you need to manually add the
PTX and CU files.

5 Distribute the generated installer to application users.

Users of the application must have access to the cluster specified in the profile.

 Use Parallel Computing Toolbox in Deployed Applications

3-9

Integrate Application with Mac OS X Finder
In this section...
“Overview” on page 3-10
“Installing the Mac Application Launcher Preference Pane” on page 3-10
“Configuring the Installation Area” on page 3-10
“Running the Application” on page 3-12

Overview
Mac graphical applications, opened through the Mac OS X finder utility, require additional
configuration if MATLAB software or the MATLAB Runtime are not installed in default locations.

Installing the Mac Application Launcher Preference Pane
Install the Mac Application Launcher preference pane, which gives you the ability to specify your
installation area.

1 In the Mac OS X Finder, navigate to install_area/toolbox/compiler/maci64.
2 Double-click MW_App_Launch.prefPane.

Note The Mac Application Launcher manages only user preference settings. If you copy the
preferences defined in the launcher to the Mac System Preferences area, the preferences are still
manipulated in the User Preferences area.

Configuring the Installation Area
After you install the preference pane, you configure the installation area.

1 Open the preference pane by clicking the apple logo in the upper left corner of the desktop.
2 Click System Preferences. The MW_App_Launch preference pane appears in the Other area.

3 Deploying Standalone Applications

3-10

3 Define an installation area on your system by clicking Add Install Area.
4 Define the default installation path by browsing to it.
5 Click Open.

 Integrate Application with Mac OS X Finder

3-11

Modifying Your Installation Area

Occasionally, you remove an installation area, define additional areas, or change the order of
installation area precedence.

You can use the following options in MathWorks® Application Launcher to modify your installation
area:

• Add Install Area — Define the path on your system where your applications install by default.
• Remove Install Area — Remove a previously defined installation area.
• Move Up — After selecting an installation area, click to move the defined path up the list.

Binaries defined in installation areas at the top of the list have precedence over all succeeding
entries.

• Move Down — After selecting an installation area, click to move the defined path down the list.
Binaries defined in installation areas at the top of the list have precedence over all succeeding
entries.

• Apply — Save changes and exit MathWorks Application Launcher.
• Revert — Exit MathWorks Application Launcher without saving any changes.

Running the Application
When you create a Mac application, a Mac bundle is created. If the application does not require
standard input and output, open the application by clicking the bundle in the Mac OS X Finder utility.

The location of the bundle is determined by whether you use mcc or applicationCompiler to build
the application:

3 Deploying Standalone Applications

3-12

• If you use applicationCompiler, the application bundle is placed in the
for_redistribution folder of the packaged application.

• If you use mcc, the application bundle is placed in the current working folder or in the output
folder, as specified by the mcc -d switch.

See Also
applicationCompiler | mcc

More About
• “Create Standalone Application from MATLAB” on page 1-5

 Integrate Application with Mac OS X Finder

3-13

Files Generated After Packaging MATLAB Functions
When the packaging process is complete, three folders are generated in the target folder location:
for_redistribution, for_redistribution_files_only, and for_testing.

for_redistribution Folder
Distribute the for_redistribution folder to users who do not have MATLAB installed on their
machines.

The folder contains the file MyAppInstaller_web.exe that installs the application and the MATLAB
Runtime (if it is included in the application at the time of packaging). It installs all the files that
enable use of the packaged application on the target platform with the target language in the target
folder.

for_redistribution_files_only Folder
Distribute the for_redistribution_files_only folder to users who do not have MATLAB
installed on their machines. This folder contains specific files that enable use of the packaged
application on the target platform with the target language.

Standalone Applications

File Description
filename.exe Standalone executable file.
readme.txt Text file containing packaging information.
splash.png When the executable starts, the file is read from

the same folder where the executable is located,
and the splash screen is displayed.

Excel Add-Ins

File Description
_install.bat The file that registers the generated dll file.
filename.bas VBA module file that can be imported into a VBA

project.
filename.xla Excel add-in that can be added directly to Excel.

You do not need both .bas file and .xla file, one
of them is sufficient.

filename_2_0.dll The generated dll that needs to be registered
using mwregsvr.exe or regsvr32.exe.

readme.txt Text file containing packaging information.

for_testing Folder
Use the files in this folder to test you application. The folder contains all the intermediate and final
artifacts such as binaries, JAR files, header files, and source files for a specific target. The final
artifacts created during the packaging process are the same files as described in

3 Deploying Standalone Applications

3-14

“for_redistribution_files_only Folder” on page 3-14. For further information on how to test your
packaged applications, see the following topics:

Target Link
Standalone Application “Install and Run MATLAB Generated Standalone

Application” on page 1-7
Excel Add-In “Execute Functions and Create Macros”

The intermediate artifacts generated are a result of packaging of the MATLAB files. They are not
significant to the user.

This folder also contains two text files. mccExcludedFiles.txt lists the files excluded from
packaged application, and requiredMCRProducts.txt, contains product IDs of products required
by MATLAB Runtime to run the application.

See Also
deploytool | mcc

More About
• “Create Standalone Application from MATLAB” on page 1-5
• “Create Excel Add-In from MATLAB”

 Files Generated After Packaging MATLAB Functions

3-15

Customizing a Compiler Project

• “Customize an Application” on page 4-2
• “Manage Support Packages” on page 4-9

4

Customize an Application
You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
• Version: The default value is 1.0.
• Author name: Name of the developer.
• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For example, if the

company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.
• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page of the
installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

4 Customizing a Compiler Project

4-2

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target
system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

 Customize an Application

4-3

A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Determine Data Type of Command-Line Input (For Packaging
Standalone Applications Only)
When an executable standalone application is run in the command prompt, the default input type is
char. You can keep this default, or choose to interpret all inputs as numeric MATLAB doubles.

To pass inputs to the standalone application as MATLAB character vectors, select Treat all inputs to
the app as MATLAB character vectors. In this case, you must include code to convert char to a
numeric MATLAB type in the MATLAB function to be deployed as a standalone application.

To pass inputs to the standalone application as numeric MATLAB variables, select Treat all inputs to
the app as numeric MATLAB doubles. option in the Application Compiler App. Thus, you do not
need to include code to convert char to a numeric MATLAB type. Non numeric inputs to the
application may result in an error.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

4 Customizing a Compiler Project

4-4

If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java package
• .NET assembly
• Python® package

The sample driver file creation feature in Library Compiler uses MATLAB code to generate sample
driver files in the target language. The sample driver files are used to implement the generated
shared libraries into an application in the target language. In the app, click Create New Sample to
automatically generate a new MATLAB script, or click Add Existing Sample to upload a MATLAB
script that you have already written. After you package your functions, a sample driver file in the
target language is generated from your MATLAB script and is saved in
for_redistribution_files_only\samples. Sample driver files are also included in the installer
in for_redistribution.

 Customize an Application

4-5

To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you can edit it as necessary based
on the behavior of your exported functions. The sample MATLAB files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell

array.
• Data must be saved as a local variable and then passed to the exported function in the sample file

code.
• Sample file code should not require user interaction.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

You can also choose not to include a sample driver file at all during the packaging step. If you create
your own driver code in the target language, you can later copy and paste it into the appropriate
directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

4 Customizing a Compiler Project

4-6

When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Standalone
Applications

• Do not display the
Windows Command
Shell (console) for
execution — If you
select this option on a
Windows platform,
when you double-click
the application from
the file explorer, the
application window
opens without a
command prompt.

• Create log file —
Generate a MATLAB
log file for the
application. The
packaged application
can't create a log file if
installed in the C:
folder on Windows
because the
application does not
have write permission
in that folder.

 Customize an Application

4-7

Type of Packaged
Application

Description Additional Runtime Settings Options

Excel Add-Ins • Register the
component for the
current user
(Recommended for
non-admin users) —
This option enables
registering the
component for the
current user account.
It is provided for users
without admin rights.

• Create log file —
Generate a MATLAB
log file for the
application. The
packaged application
can't create a log file if
installed in the C:
folder on Windows
because the
application does not
have write permission
in that folder.

See Also
applicationCompiler | libraryCompiler

More About
• “Create Standalone Application from MATLAB” on page 1-5
• “Create Excel Add-In from MATLAB”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB

Compiler SDK)

4 Customizing a Compiler Project

4-8

Manage Support Packages
Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of

the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

 Manage Support Packages

4-9

support package folder. For example, if your function uses the OS Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

4 Customizing a Compiler Project

4-10

MATLAB Code Deployment

• “How Does MATLAB Deploy Functions?” on page 5-2
• “Dependency Analysis” on page 5-3
• “MEX-Files, DLLs, or Shared Libraries” on page 5-4
• “Deployable Archive” on page 5-5
• “Write Deployable MATLAB Code” on page 5-8
• “Calling Shared Libraries in Deployed Applications” on page 5-11
• “MATLAB Data Files in Compiled Applications” on page 5-12

5

How Does MATLAB Deploy Functions?
To deploy MATLAB functions, the compiler performs these tasks:

1 Analyzes files for dependencies using a dependency analysis function. Dependencies affect
deployability and originate from functions called by the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.
• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis, see “Dependency
Analysis” on page 5-3.

2 Validates MEX-files. In particular, mexFunction entry points are verified.

For more details about MEX-file processing, see “MEX-Files, DLLs, or Shared Libraries” on page
5-4.

3 Creates a deployable archive from the input files and their dependencies.

For more details about deployable archives see “Deployable Archive” on page 5-5.
4 Generates target-specific wrapper code.
5 Generates target-specific binary package.

For library targets such as C++ shared libraries, Java packages, or .NET assemblies, the
compiler invokes the required third-party compiler.

5 MATLAB Code Deployment

5-2

Dependency Analysis

In this section...
“Function Dependency” on page 5-3
“Data File Dependency” on page 5-3

MATLAB Compiler uses a dependency analysis function to determine the list of necessary files to
include in the generated package. Sometimes, this process generates a large list of files, particularly
when MATLAB object classes exist in the compilation and the dependency analyzer cannot resolve
overloaded methods at package time. Dependency analysis also processes include/exclude files on
each pass.

Tip To improve package time performance and lessen application size, prune the path with the mcc
command’s -N and -p flags. You can also specify Files required for your application in the
compiler app.

Function Dependency
The dependency analyzer searches for executable content such as:

• MATLAB files
• P-files

Note If the MATLAB file corresponding to the p-file is not available, the dependency analysis
cannot determine the p-file’s dependencies.

• .fig files
• MEX-files

Data File Dependency
In addition to executable content listed above, MATLAB Compiler can detect and automatically
include files that your MATLAB functions access by calling any of these functions: audioinfo,
audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo, importdata, imread,
load, matfile, mmfileinfo, open, readtable, type, VideoReader, xlsfinfo, xlsread,
xmlread, and xslt.

If you are using the compiler app, these data files are automatically added to the Files required for
your application to run area of the app.

See Also
applicationCompiler | mcc

More About
• Application Compiler

 Dependency Analysis

5-3

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that the dependency analyzer can
find them. Doing so allows you to avoid many common compilation problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries to determine
their dependencies, explicitly include all executable files these files require. To do so, use either
the mcc -a option or the Files required for your application to run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB function called by a MEX-
file, DLL, or shared library, then manually include that function. To do so, use either the mcc -a
option or the Files required for your application to run field in the compiler app.

• Not all functions are compatible with the compiler. Check the file mccExcludedFiles.log after
your build completes. This file lists all functions called from your application that you cannot
deploy.

5 MATLAB Code Deployment

5-4

Deployable Archive
Each application or shared library you produce using the compiler has an embedded deployable
archive. The archive contains all the MATLAB based content (MATLAB files, MEX-files, and so on). All
MATLAB files in the deployable archive are encrypted using the Advanced Encryption Standard (AES)
cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain encrypted. For
more information on how to extract the deployable archive refer to the references in the following
table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to
MATLAB Compiler SDK C/C++ integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK .NET integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK Java integration “Deployable Archive Embedding and Extraction”
(MATLAB Compiler SDK)

MATLAB Compiler Excel integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding”

 Deployable Archive

5-5

Additional Details
Multiple deployable archives, such as those generated with COM components, .NET assemblies, or
Excel add-ins, can coexist in the same user application. You cannot, however, mix and match the
MATLAB files they contain. You cannot combine encrypted and compressed MATLAB files from
multiple deployable archives into another deployable archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique cryptographic key.
MATLAB files with different keys, placed in the same deployable archive, do not execute. If you want
to generate another application with a different mix of MATLAB files, recompile these MATLAB files
into a new deployable archive.

The compiler deletes the deployable archive and generated binary following a failed compilation, but
only if these files did not exist before compilation initiates. Run help mcc -K for more information.

5 MATLAB Code Deployment

5-6

Caution Release Engineers and Software Configuration Managers: Do not use build procedures
or processes that strip shared libraries on deployable archives. If you do, you can possibly strip the
deployable archive from the binary, resulting in run-time errors for the driver application.

 Deployable Archive

5-7

Write Deployable MATLAB Code
In this section...
“Packaged Applications Do Not Process MATLAB Files at Run Time” on page 5-8
“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files” on page 5-
9
“Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-9
“Gradually Refactor Applications That Depend on Noncompilable Functions” on page 5-9
“Do Not Create or Use Nonconstant Static State Variables” on page 5-9
“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 5-10

Packaged Applications Do Not Process MATLAB Files at Run Time
The compiler secures your code against unauthorized changes. Deployable MATLAB files are
suspended or frozen at the time of compilation. This does not mean that you cannot deploy a flexible
application—it means that you must design your application with flexibility in mind. If you want the
end user to be able to choose between two different methods, for example, both methods must be
available in the deployable archive.

The MATLAB Runtime only works on MATLAB code that was encrypted when the deployable archive
was built. Any function or process that dynamically generates new MATLAB code will not work
against the MATLAB Runtime.

Some MATLAB toolboxes, such as the Deep Learning Toolbox™ product, generate MATLAB code
dynamically. Because the MATLAB Runtime only executes encrypted MATLAB files, and the Deep
Learning Toolbox generates unencrypted MATLAB files, some functions in the Deep Learning Toolbox
cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function file cannot be deployed.
HELP, for example, is dynamic and not available in deployed mode. You can use LOADLIBRARY in
deployed mode if you provide it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and attempting to deploy it,
perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.
2 Package the MATLAB code, including the generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

If you require the ability to create MATLAB code for dynamic run-time processing, your end users
must have an installed copy of MATLAB.

5 MATLAB Code Deployment

5-8

Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files
In general, good programming practices advise against redirecting a program search path
dynamically within the code. Many developers are prone to this behavior since it mimics the actions
they usually perform on the command line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and cannot change.
Therefore, any attempt to change these paths (using the cd command or the addpath command)
fails.

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-
9 for details.

Use isdeployed Functions To Execute Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB code is deployable,
and which is not. Such specification minimizes your compilation errors and helps create more
efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your startup.m. Using ismcc
and isdeployed, you specify when and what is packaged and executed.

Gradually Refactor Applications That Depend on Noncompilable
Functions
Over time, refactor, streamline, and modularize MATLAB code containing non-compilable or non-
deployable functions that use isdeployed. Your eventual goal is “graceful degradation” of non-
deployable code. In other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes through a phase of
perpetual rewriting, debugging, and optimization. In some toolboxes, such as the Deep Learning
Toolbox product, the code goes through a period of self-training as it reacts to various data
permutations and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a finished state and is
ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for code that calls
undeployable code.

Do Not Create or Use Nonconstant Static State Variables
Avoid using the following:

• Global variables in MATLAB code
• Static variables in MEX-files

 Write Deployable MATLAB Code

5-9

• Static variables in Java code

The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because the MATLAB
Runtime process runs in a single thread. You cannot load more than one of these non-constant, static
variables into the same process. In addition, these static variables do not work well in multithreaded
applications.

When programming against packaged MATLAB code, you should be aware that an instance of the
MATLAB Runtime is created for each instance of a new class. If the same class is instantiated again
using a different variable name, it is attached to the MATLAB Runtime created by the previous
instance of the same class. In short, if an assembly contains n unique classes, there will be maximum
of n instances of MATLAB Runtime created, each corresponding to one or more instances of one of
the classes.

If you must use static variables, bind them to instances. For example, defining instance variables in a
Java class is preferable to defining the variable as static.

Get Proper Licenses for Toolbox Functionality You Want to Deploy
You must have a valid MathWorks license for toolboxes you use to create deployable MATLAB code.

See Also
isdeployed | ismcc

More About
• MATLAB Compiler support for MATLAB and toolboxes

5 MATLAB Code Deployment

5-10

https://www.mathworks.com/products/compiler/supported/compiler_support.html

Calling Shared Libraries in Deployed Applications
The loadlibrary function in MATLAB allows you to load shared library into MATLAB.

Loading libraries using header files is not supported in compiled applications. Therefore, to create an
application that uses the loadlibrary function with a header file, follow these steps:

1 Create a prototype MATLAB file. Suppose that you call loadlibrary with the following syntax.

loadlibrary(library, header)

Run the following command in MATLAB only once to create the prototype file:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

This creates mylibrarymfile.m in the current folder. If you are on Windows, another file
named library_thunk_pcwin64.dll is also created in the current folder.

2 Change the call to loadlibrary in your MATLAB to the following:

loadlibrary(library, @mylibrarymfile)
3 Compile and deploy the application.

• If you are integrating the library into a deployed application, specify the library’s .dll along
with library_thunk_pcwin64.dll, if created, using the -a option of mcc command. If you
are using Application Compiler or Library Compiler apps, add the .dll files to the Files
required for your application to run section of the app.

• If you are providing the library as an external file that is not integrated with the deployed
application, place the library .dll file in the same folder as the compiled application. If you
are on Windows, you must integrate library_thunk_pcwin64.dll into your compiled
application.

The benefit of this approach is that you can replace the library with an updated version
without recompiling the deployed application. Replacing the library with a different version
works only if the function signatures of the function in the library are not altered. This is
because mylibrarymfile.m and library_thunk_pcwin64.dll are tied to the function
signatures of the functions in the library.

Note You cannot use loadlibrary inside MATLAB to load a shared library built with MATLAB. For
more information on loadlibrary, see “Limitations to Shared Library Support” (MATLAB).

Note Operating systems have a loadlibrary function, which loads specified Windows operating
system module into the address space of the calling process.

See Also
loadlibrary

Related Examples
• “Call C Functions in Shared Libraries” (MATLAB)

 Calling Shared Libraries in Deployed Applications

5-11

MATLAB Data Files in Compiled Applications
In this section...
“Explicitly Including MATLAB Data files Using the %#function Pragma” on page 5-12
“Load and Save Functions” on page 5-12

Explicitly Including MATLAB Data files Using the %#function Pragma
The compiler excludes MATLAB data files (MAT-files) from dependency analysis by default. See
“Dependency Analysis” on page 5-3.

If you want the compiler to explicitly inspect data within a MAT file, you need to specify the
%#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Deep Learning Toolbox, you need to use the
%#function pragma within your code to include a dependency on the gmdistribution class, for
instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful to code LOAD and SAVE
functions to manipulate the data and store it for later processing.

• Use isdeployed to determine if your code is running in or out of the MATLAB workspace.
• Specify the data file by either using WHICH (to locate its full path name) define it relative to the

location of ctfroot.
• All MAT-files are unchanged after mcc runs. These files are not encrypted when written to the

deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 5-5.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside, and outside, of
MATLAB.

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

• user_data.mat
• userdata\extra_data.mat
• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.
2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
 '.\userdata\extra_data.mat' -a
 '..\externdata\extern_data.mat'

5 MATLAB Code Deployment

5-12

ex_loadsave.m
function ex_loadsave
% This example shows how to work with the
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
% user_data.mat
% userdata\extra_data.mat
% ..\externdata\extern_data.mat
%
% Compile this example with the mcc command:
% mcc -m ex_loadsave.m -a 'user_data.mat' -a
% '.\userdata\extra_data.mat'
% -a '..\externdata\extern_data.mat'
% All the folders under the current main MATLAB file directory will
% be included as
% relative path to ctfroot; All other folders will have the
% folder
% structure included in the deployable archive file from root of the
% disk drive.
%
% If a data file is outside of the main MATLAB file path,
% the absolute path will be
% included in deployable archive and extracted under ctfroot. For example:
% Data file
% "c:\$matlabroot\examples\externdata\extern_data.mat"
% will be added into deployable archive and extracted to
% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
%
% All mat/data files are unchanged after mcc runs. There is
% no encryption on these user included data files. They are
% included in the deployable archive.
%
% The target data file is:
% .\output\saved_data.mat
% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

%==== load data file =============================
if isdeployed
 % In deployed mode, all file under CTFRoot in the path are loaded
 % by full path name or relative to $ctfroot.
 % LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));
 % LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
 LOADFILENAME1=which(fullfile('user_data.mat'));
 LOADFILENAME2=which(fullfile('extra_data.mat'));
 % For external data file, full path will be added into deployable archive;
 % you don't need specify the full path to find the file.
 LOADFILENAME3=which(fullfile('extern_data.mat'));
else
 %running the code in MATLAB
 LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','user_data.mat');
 LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','userdata','extra_data.mat');
 LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',
 'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

 MATLAB Data Files in Compiled Applications

5-13

% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = data1*data2;
disp('A * B = ');
disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if (~isdir(SAVEPATH))
 mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');
disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result');

5 MATLAB Code Deployment

5-14

Standalone Application Creation

6

Dependency Analysis Function and User Interaction with the
Compilation Path

addpath and rmpath in MATLAB
MATLAB Compiler uses the MATLAB search path to analyze dependencies. See addpath, rmpath,
savepath for information on working with the search path.

Note mcc does not use the MATLAB startup folder and will not find any path information saved
there.

Passing -I <directory> on the Command Line
You can use the -I option to add a folder to the beginning of the list of paths to use for the current
compilation. This feature is useful when you are compiling files that are in folders currently not on
the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are two MATLAB Compiler options that provide more detailed manipulation of the path. This
feature acts like a “filter” applied to the MATLAB path for a given compilation. The first option is -N.
Passing -N on the mcc command line effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler\deploy
• matlabroot\toolbox\compiler

It also retains all subfolders of the above list that appear on the MATLAB path at compile time.
Including -N on the command line allows you to replace folders from the original path, while
retaining the relative ordering of the included folders. All subfolders of the included folders that
appear on the original path are also included. In addition, the -N option retains all folders that the
user has included on the path that are not under matlabroot\toolbox.

Use the -p option to add a folder to the compilation path in an order-sensitive context, i.e., the same
order in which they are found on your MATLAB path. The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an absolute path, it is
assumed to be under the current working folder. The rules for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path, the folder and all its subfolders
that appear on the original path are added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB path, that folder is not included
in the compilation. (You can use -I to add it.)

6 Standalone Application Creation

6-2

• If a path is added with the -I option while this feature is active (-N has been passed) and it is
already on the MATLAB path, it is added in the order-sensitive context as if it were included with
-p. Otherwise, the folder is added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

 Dependency Analysis Function and User Interaction with the Compilation Path

6-3

Deployment Process

This chapter tells you how to deploy compiled MATLAB code to developers and to end users.

• “About the MATLAB Runtime” on page 7-2
• “Install and Configure the MATLAB Runtime” on page 7-3
• “Run Applications Using a Network Installation of MATLAB Runtime (Windows Only)”

on page 7-9
• “MATLAB Runtime on Big Data Platforms” on page 7-10

7

About the MATLAB Runtime

In this section...
“How is the MATLAB Runtime Different from MATLAB?” on page 7-2
“Performance Considerations and the MATLAB Runtime” on page 7-2

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other files that
enables the execution of MATLAB files on computers without an installed version of MATLAB.
Applications that use artifacts built with MATLAB Compiler SDK require access to an appropriate
version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB Runtime on their
computers or know the location of a network-installed MATLAB Runtime. The installers generated by
the compiler apps may include the MATLAB Runtime installer. If you compiled your artifact using
mcc, you should direct your end-users to download the MATLAB Runtime installer from the website
https://www.mathworks.com/products/compiler/mcr.

See “Install and Configure the MATLAB Runtime” on page 7-3 for more information.

How is the MATLAB Runtime Different from MATLAB?
The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the version of the

MATLAB Runtime associated with the version of MATLAB Compiler SDK with which it was
created. For example, if you compiled an application using version 6.3 (R2016b) of MATLAB
Compiler, users who do not have MATLAB installed must have version 9.1 of the MATLAB Runtime
installed. Use mcrversion to return the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed. To change
them, you must first customize them within MATLAB.

Performance Considerations and the MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use the MATLAB
programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language, including the
Java programming language, starting a compiled application takes approximately the same amount of
time as starting MATLAB. The amount of resources consumed by the MATLAB Runtime is necessary
in order to retain the power and functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are threadsafe. This
can impact performance.

7 Deployment Process

7-2

https://www.mathworks.com/products/compiler/matlab-runtime.html

Install and Configure the MATLAB Runtime

In this section...
“Download the MATLAB Runtime Installer from the Web” on page 7-3
“Install the MATLAB Runtime Interactively” on page 7-3
“Install the MATLAB Runtime Non-Interactively” on page 7-4
“Install the MATLAB Runtime without Administrator Rights” on page 7-6
“Multiple MATLAB Runtime Versions on Single Machine” on page 7-6
“MATLAB and MATLAB Runtime on Same Machine” on page 7-6
“Uninstall MATLAB Runtime” on page 7-7

Download the MATLAB Runtime Installer from the Web
Download the MATLAB® Runtime from the website at https://www.mathworks.com/products/
compiler/matlab-runtime.html.

Install the MATLAB Runtime Interactively
To install the MATLAB Runtime:

1 Unzip/Extract the archive containing the MATLAB Runtime installer.

Platform Steps
Windows Unzip the MATLAB Runtime installer. To unzip the installer:

• Right click the zip file MATLAB_Runtime_R2020a_win64.zip
• Select Extract All, and then follow the instructions.

Linux Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2020a MATLAB Runtime
installer, at the Terminal, type:

unzip MATLAB_Runtime_R2020a_glnxa64.zip

macOS Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2020a MATLAB Runtime
installer, at the Terminal, type:

unzip MATLAB_Runtime_R2020a_maci64.zip

Note The release part of the installer filename (_R2020a_) will change from one release to the
next.

2 Start the MATLAB Runtime installer.

 Install and Configure the MATLAB Runtime

7-3

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

Platform Steps
Windows Double-click the file setup.exe from the extracted files to start the

installer.
Linux At the Terminal, type:

sudo ./install

Note On Debian® based Linux distributions, you will need to type:

gksudo ./install

macOS At the Terminal, type:

./install

Note You may need to enter an administrator username and password
after you run ./install.

3 When the MATLAB Runtime installer starts, it displays a dialog box. Read the information and
then click Next to proceed with the installation.

4 Specify the folder in which you want to install the MATLAB Runtime in the Folder Selection
dialog box.

Note On Windows systems, you can have multiple versions of the MATLAB Runtime on your
computer but only one installation for any particular version. If you already have an existing
installation, the MATLAB Runtime installer does not display the Folder Selection dialog box
because you can only overwrite the existing installation in the same folder.

5 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
6 On Linux and macOS platforms, after copying files to your disk, the MATLAB Runtime installer

displays the Product Configuration Notes dialog box. This dialog box contains information
necessary for setting your path environment variables. Copy the path information from this
dialog box and then click Next.

7 Click Finish to exit the installer.

Install the MATLAB Runtime Non-Interactively
To install the MATLAB Runtime without having to interact with the installer dialog boxes, use one of
the MATLAB Runtime installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any dialog boxes
• automated—the installer displays the dialog boxes but does not wait for user interaction

When run in silent or automated mode, the MATLAB Runtime installer uses default values for
installation options. You can override these defaults by using MATLAB Runtime installer command-
line options or an installer control file.

Note When running in silent or automated mode, the installer overwrites the default installation
location.

7 Deployment Process

7-4

Running the Installer in Silent Mode

To install the MATLAB Runtime in silent mode:

1 Extract the contents of the MATLAB Runtime installer file to a temporary folder, called $temp in
this documentation.

Note On Windows systems, manually extract the contents of the installer file.
2 Run the MATLAB Runtime installer, specifying the -mode option and -agreeToLicense yes on

the command line.

Note On most platforms, the installer is located at the root of the folder into which the archive
was extracted. On Windows 64, the installer is located in the archives bin folder.

Platform Command
Windows setup -mode silent -agreeToLicense

yes
Linux ./install -mode silent -

agreeToLicense yes
macOS ./install -mode silent -

agreeToLicense yes

Note If you do not include the -agreeToLicense yes the installer will not install the MATLAB
Runtime.

3 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in the location
defined by your TEMP environment variable.

4 On Linux and macOS systems, specify the path variable. The MATLAB Runtime installer displays
the log information for Linux and macOS systems at the command prompt, unless you redirect it
to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default values unless told to
do otherwise. Like the MATLAB installer, the MATLAB Runtime installer accepts a number of
command line options that modify the default installation properties.

Option Description
-destinationFolder Specifies where the MATLAB Runtime will be

installed.
-outputFile Specifies where the installation log file is written.
-automatedModeTimeout Specifies how long, in milliseconds, that the

dialog boxes are displayed when run in automatic
mode.

 Install and Configure the MATLAB Runtime

7-5

Option Description
-inputFile Specifies an installer control file with the values

for all of the above options.

Note The MATLAB Runtime installer archive includes an example installer control file called
installer_input.txt. This file contains all of the options available for a full MATLAB installation.
Only the options listed in this section are valid for the MATLAB Runtime installer.

Install the MATLAB Runtime without Administrator Rights
To install the MATLAB Runtime as a user without administrator rights on Windows:

1 Use the MATLAB Runtime installer to install it on a Windows machine where you have
administrator rights.

2 Copy the folder where the MATLAB Runtime was installed to the machine without administrator
rights. You can compress the folder into zip file and distribute to multiple users.

3 On the machine without administrator rights, add the mcr_root\runtime\arch directory onto
the user’s path environment variable.

Note You don’t need administrator rights for adding directories to a user’s path environment
variable.

Multiple MATLAB Runtime Versions on Single Machine
MCRInstaller supports the installation of multiple versions of the MATLAB Runtime on a target
machine. This allows applications compiled with different versions of the MATLAB Runtime to
execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you can remove the
unwanted ones. On Windows, run Add or Remove Programs from the Control Panel to remove any
of the previous versions. On Linux, you manually delete the unwanted MATLAB Runtime. You can
remove unwanted versions before or after installation of a more recent version of the MATLAB
Runtime, as versions can be installed or removed in any order.

MATLAB and MATLAB Runtime on Same Machine
You do not need to install MATLAB Runtime on your machine if your machine has MATLAB installed.
The version of MATLAB should be the same as the version of MATLAB that was used to create the
compiled MATLAB code. Also, to act as the MATLAB Runtime replacement, the MATLAB installation
must include MATLAB Compiler.

You can, however, install the MATLAB Runtime for debugging purposes.

Modifying the Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must adjust the
library path according to your needs.

• Windows

7 Deployment Process

7-6

To run deployed MATLAB code against MATLAB Runtime install, mcr_root\ver\runtime
\win64 must appear on your system path before matlabroot\runtime\win64.

If mcr_root\ver\runtime\arch appears first on the compiled application path, the application
uses the files in the MATLAB Runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the application
uses the files in the MATLAB installation area.

• Linux

To run deployed MATLAB code against MATLAB Runtime on Linux, the folder <mcr_root>/
runtime/<arch> must appear on your LD_LIBRARY_PATH before matlabroot/runtime/
<arch>.

• macOS

To run deployed MATLAB code on macOS, the <mcr_root>/runtime folder must appear on your
DYLD_LIBRARY_PATH before matlabroot/runtime/<arch>.

To run MATLAB on macOS or Intel® Mac, matlabroot/runtime/<arch> must appear on your
DYLD_LIBRARY_PATH before the <mcr_root>/bin folder.

Uninstall MATLAB Runtime
The method you use to uninstall MATLAB Runtime from your computer varies depending on the type
of computer.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control panel, and
double-click MATLAB Runtime in the list.

You can also start the MATLAB Runtime uninstaller from the mcr_root\uninstall\bin\arch
folder, where mcr_root is your MATLAB Runtime installation folder and arch is an architecture-
specific folder, such as win64.

2 Select the MATLAB Runtime from the list of products in the Uninstall Products dialog box.
3 Click Next.
4 Click Finish.

Linux

1 Exit the application.
2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.

macOS

1 Exit the application.
2 Navigate to your MATLAB Runtime installation folder. For example, the installation folder might

be named MATLAB_Compiler_Runtime.app in your Applications folder.

 Install and Configure the MATLAB Runtime

7-7

3 Drag your MATLAB Runtime installation folder to the trash, and then select Empty Trash from
the Finder menu.

7 Deployment Process

7-8

Run Applications Using a Network Installation of MATLAB
Runtime (Windows Only)

Local clients on a network can access MATLAB Runtime on a network drive. To run applications using
a network install of MATLAB Runtime:

1 Run the mcrinstaller function to obtain name and location of the MATLAB Runtime installer.
2 Copy the entire MATLAB Runtime folder onto a network drive.
3 Copy the compiled application into a separate folder on the network drive, and add the path

<mcr_root>\<ver>\runtime\<arch> to all client machines. All network clients can then
execute the application.

4 The following table specifies what DLLs to register to deploy specific applications.

Application Deployed DLL's to Register on Each Client Machine
Excel Add-Ins mwcomutil.dll

mwcommgr.dll
.NET assemblies to create COM objects mwcomutil.dll

To register the DLLs, at the DOS prompt enter:

mwregsvr <fully_qualified_pathname\dllname.dll>

These DLLs are located in <matlab_runtime_root>\<ver>\bin\win64.

Note These libraries are automatically registered on the machine on which the installer was run.

Note There is no need to perform these steps on a Linux system.

Distributing to a Linux network file system is the same as distributing to a local file system. You
set up the LD_LIBRARY_PATH or use scripts on page B-2 which point to the MATLAB Runtime
installation.

 Run Applications Using a Network Installation of MATLAB Runtime (Windows Only)

7-9

MATLAB Runtime on Big Data Platforms
MATLAB Runtime an be download and installed on big data platforms such as Cloudera®, Apache
Ambari™, and Azure® HDInsight.

Cloudera
MATLAB Runtime can be downloaded as a parcel by Cloudera Manager.

Download URL

https://www.mathworks.com/supportfiles/downloads/R2020a/deployment_files/
R2020a/cdhparcels

After downloading the parcel, you can and distribute and activate it across the cluster. For more
information on how to work with Cloudera Manager and parcels, see the Cloudera documentation.

Apache Ambari
MATLAB Runtime is available for distribution as an Apache Ambari stack.

You can distribute MATLAB Runtime across a Hadoop® cluster using Apache Ambari.

Download URL

https://www.mathworks.com/supportfiles/downloads/R2020a/deployment_files/
R2020a/ambari/matlab-runtime-2020a-service.tgz

https://www.mathworks.com/supportfiles/downloads/R2020a/deployment_files/
R2020a/ambari/matlab-runtime-2020a-service.sha1

For more information, see the Apache Ambari documentation.

Azure HDInsight
MATLAB Runtime is available for distribution as an Azure HDInsight script action. You can distribute
MATLAB Runtime across an Azure HDInsight cluster using script action.

Download URL

https://www.mathworks.com/supportfiles/downloads/R2020a/deployment_files/
R2020a/hdinsight

7 Deployment Process

7-10

Work with the MATLAB Runtime

• “MATLAB Runtime Startup Options” on page 8-2
• “Using the MATLAB Runtime User Data Interface” on page 8-4
• “Display the MATLAB Runtime Initialization Messages” on page 8-6

8

MATLAB Runtime Startup Options

Set MATLAB Runtime Options
For a standalone executable, set MATLAB Runtime options by specifying the -R switch and
arguments. You can set options from either of the following:

• The Additional Runtime Settings area of the compiler apps.
• The mcc command.

Note Not all options are available for all compilation targets.

Use a Compiler App

In the Additional Runtime Settings area of the compiler apps, you can set the following options.

MATLAB Runtime Startup
Option

Description Setting

-nojvm Disable the Java Virtual
Machine (JVM™), which is
enabled by default. This can
help improve the MATLAB
Runtime performance.

Select the No JVM check box.

-nodisplay On Linux, open the MATLAB
Runtime without display
functionality.

In the Settings box, enter -R -
nodisplay.

-logfile Write information about the
MATLAB Runtime startup to a
logfile.

Select the Create log file check
box. Enter the path to the log
file, including the log file name,
in the Log File box.

-startmsg Specify message to be displayed
when the MATLAB Runtime
begins initialization.

In the Settings box, enter -R
'startmsg, message text'.

-completemsg Specify message to be displayed
when the MATLAB Runtime
completes initialization.

In the Settings box, enter -R
'completemsg, message
text'.

Set MATLAB Runtime Startup Options Using the mcc Command Line

When you use the command line, specify the -R switch to invoke the MATLAB Runtime startup
options you want to use.

Following are examples of using mcc -R to invoke -nojvm, -nodisplay, and -logfile when
building a standalone executable (designated by the -m switch).

Set -nojvm

mcc -m -R -nojvm -v foo.m

8 Work with the MATLAB Runtime

8-2

Set -nodisplay (Linux Only)

mcc -m -R -nodisplay -v foo.m

Set -logfile

mcc -e -R '-logfile,bar.txt' -v foo.m

Set -nojvm, -nodisplay, and -logfile with One Command

mcc -m -R '-logfile,bar.txt,-nojvm,-nodisplay' -v foo.m

 MATLAB Runtime Startup Options

8-3

Using the MATLAB Runtime User Data Interface
The MATLAB Runtime User Data Interface lets you easily access MATLAB Runtime data. It allows
keys and values to be passed among a MATLAB Runtime instance, the MATLAB code running on the
MATLAB Runtime, and the host application that created the instance. Through calls to the MATLAB
Runtime User Data Interface API, you access MATLAB Runtime data by creating a per-instance
associative array of mxArrays, consisting of a mapping from string keys to mxArray values. Reasons
for doing this include, but are not limited to the following:

• You need to supply run-time profile information to a client running an application created with the
Parallel Computing Toolbox. You supply and change profile information on a per-execution basis.
For example, two instances of the same application may run simultaneously with different profiles.
For more information, see “Use Parallel Computing Toolbox in Deployed Applications” (MATLAB
Compiler SDK).

• You want to set up a global workspace, a global variable, or variables that MATLAB and your client
can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB functions callable from within deployed application MATLAB code
• Four external C functions callable from within deployed application wrapper code

MATLAB Functions
Use the MATLAB functions getmcruserdata and setmcruserdata from deployed MATLAB
applications. They are loaded by default only in applications created with the MATLAB Compiler or
MATLAB Compiler SDK products.

You can include setmcruserdata and getmcruserdata in your packaged application using mcc as
follows:

mcc -g -W cpplib:<lib> -T link:lib ... setmcruserdata.m getmcruserdata.m

You can also use the %# function in your MATLAB file to include setmcruserdata and
getmcruserdata. Doing so ensures inclusion of these functions in the packaged application when
you use deploytool.

Tip getmcruserdata and setmcruserdata produce an Unknown function error when called in
MATLAB if the MCLMCR module cannot be located. You can avoid this situation by calling
isdeployed before calling getmcruserdata and setmcruserdata. For more information about
the isdeployed function, see the isdeployed reference page.

Set and Retrieve MATLAB Runtime Data for Shared Libraries
There are many possible scenarios for working with MATLAB Runtime data. The most general
scenario involves setting the MATLAB Runtime with specific data for later retrieval, as follows:

1 In your code, include the MATLAB Runtime header file and the library header generated by
MATLAB Compiler SDK.

8 Work with the MATLAB Runtime

8-4

2 Properly initialize your application using mclInitializeApplication.
3 After creating your input data, write or set it to the MATLAB Runtime with setmcruserdata.
4 After calling functions or performing other processing, retrieve the new MATLAB Runtime data

with getmcruserdata.
5 Free up storage memory in work areas by disposing of unneeded arrays with mxDestroyArray.
6 Shut down your application properly with mclTerminateApplication.

See Also
getmcruserdata | setmcruserdata

 Using the MATLAB Runtime User Data Interface

8-5

Display the MATLAB Runtime Initialization Messages
You can display a console message for end users that informs them when MATLAB Runtime
initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB runtime version x.xx)
• Customize the start-up or completion message with text of your choice. The default start-up

message will also display prior to displaying your customized start-up message.

Some examples of different ways to invoke this option follow:

This command: Displays:
mcc -R -startmsg Default start-up message Initializing

MATLAB Runtime version x.xx
mcc -R -startmsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for start-up

mcc -R -completemsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for completion

mcc -R -startmsg,'user customized
message' -R -completemsg,'user
customized message"

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for both start-up and
completion by specifying -R before each option

mcc -R -startmsg,'user customized
message',-completemsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for both start-up and
completion by specifying -R only once

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB command window, place the comma inside the single quote.

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'
• If your initialization message has a space in it, call mcc from the system command window or

use !mcc from MATLAB.

8 Work with the MATLAB Runtime

8-6

Distributing Code to an End User

9

Distribute MATLAB Code Using the MATLAB Runtime
On target computers without MATLAB, install the MATLAB Runtime, if it is not already present on the
deployment machine.

MATLAB Runtime
The MATLAB Runtime is an execution engine made up of the same shared libraries MATLAB uses to
enable execution of MATLAB files on systems without an installed version of MATLAB.

The MATLAB Runtime is available for downloading from the web to simplify the distribution of your
applications created using the MATLAB Compiler or the MATLAB Compiler SDK. Download the
MATLAB Runtime from the MATLAB Runtime product page.

The MATLAB Runtime installer does the following:

1 Install the MATLAB Runtime.
2 Install the component assembly in the folder from which the installer is run.
3 Copy the MWArray assembly to the Global Assembly Cache (GAC), as part of installing the

MATLAB Runtime.

MATLAB Runtime Prerequisites

1 The MATLAB Runtime installer requires administrator privileges to run.
2 The version of the MATLAB Runtime that runs your application on the target computer must be

compatible with the version of MATLAB Compiler or MATLAB Compiler SDK that built the
deployed code.

3 Do not install the MATLAB Runtime in MATLAB installation directories.
4 The MATLAB Runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB Runtime in the generated installer, using one of the
compiler apps. The generated installer contains all files needed to run the standalone application or
shared library built with MATLAB Compiler or MATLAB Compiler SDK and properly lays them out on
a target system.

1 On the Packaging Options section of the compiler interface, select one or both of the following
options:

• Runtime downloaded from web — This option builds an installer that invokes the MATLAB
Runtime installer from the MathWorks website.

• Runtime included in package — The option includes the MATLAB Runtime installer into
the generated installer.

2 Click Package.
3 Distribute the installer as needed.

Install the MATLAB Runtime

This example shows how to install the MATLAB Runtime on a system.

9 Distributing Code to an End User

9-2

https://www.mathworks.com/products/compiler/matlab-runtime.html

If you are given an installer containing the compiled artifacts, then the MATLAB Runtime is installed
along with the application or shared library. If you are given just the raw binary files, download the
MATLAB Runtime installer from the web and run the installer.

Note If you are running on a platform other than Windows, modify the path on the target machine.
Setting the paths enables your application to find the MATLAB Runtime. For more information on
setting the path, see “MATLAB Runtime Path Settings for Run-Time Deployment” (MATLAB Compiler
SDK).

Windows paths are set automatically. On Linux and Mac, you can use the run script to set paths. See
“Problems Setting MATLAB Runtime Paths” on page B-2 for detailed information on performing all
deployment tasks specifically with UNIX® variants such as Linux and Mac.

 Distribute MATLAB Code Using the MATLAB Runtime

9-3

Compiler Commands

This chapter describes mcc, which is the command that invokes the compiler.

10

Compiler Tips
In this section...
“Deploying Applications That Call the Java Native Libraries” on page 10-2
“Using the VER Function in a Compiled MATLAB Application” on page 10-2

Deploying Applications That Call the Java Native Libraries
If your application interacts with Java, you need to specify the search path for native method libraries
by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from matlabroot/toolbox/local/librarypath.txt.
2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MATLAB Runtime library archive files are
installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library that your
application's Java code needs to load.

Using the VER Function in a Compiled MATLAB Application
When you use the VER function in a compiled MATLAB application, it will perform with the same
functionality as if you had called it from MATLAB. However, be aware that when using VER in a
compiled MATLAB application, only version information for toolboxes which the compiled application
uses will be displayed.

10 Compiler Commands

10-2

Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build standalone applications. You
can distribute standalone applications to users who do not have MATLAB software on their systems.

11

Deploying Standalone Applications

In this section...
“Compiling the Application” on page 11-2
“Testing the Application” on page 11-2
“Deploying the Application” on page 11-3
“Running the Application” on page 11-4

Compiling the Application
This example takes a MATLAB file, magicsquare.m, and creates a standalone application,
magicsquare.

1 Copy the file magicsquare.m from

matlabroot\extern\examples\compiler

to your work folder.
2 To compile the MATLAB code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a standalone application. The -v option
(verbose) displays the compilation steps throughout the process and helps identify other useful
information such as which third-party compiler is used and what environment variables are
referenced.

This command creates the standalone application called magicsquare and additional files. The
Windows platform appends the .exe extension to the name.

Testing the Application
These steps test your standalone application on your development machine.

Note Testing your application on your development machine is an important step to help ensure that
your application is compilable. To verify that your application compiled properly, you must test all
functionality that is available with the application. If you receive an error message similar to
Undefined function or Attempt to execute script script_name as a function, it is
likely that the application will not run properly on deployment machines. Most likely, your deployable
archive is missing some necessary functions. Use -a to add the missing functions to the archive and
recompile your code.

1 Update your path as described in “MATLAB Runtime Path Settings for Run-Time Deployment” on
page 14-2

2 Run the standalone application from the system prompt (shell prompt on UNIX or DOS prompt
on Windows) by typing the application name.

11 Standalone Applications

11-2

magicsquare.exe 4 (On Windows)
magicsquare 4 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare (On Maci64)

The results are:

ans =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Deploying the Application
You can distribute a MATLAB Compiler generated standalone application to any target machine that
has the same operating system as the machine on which the application was compiled.

For example, if you want to deploy an application to a Windows machine, you must use MATLAB
Compiler to build the application on a Windows machine. If you want to deploy the same application
to a UNIX machine, you must use MATLAB Compiler on the same UNIX platform and completely
rebuild the application. To deploy an application to multiple platforms requires MATLAB and MATLAB
Compiler licenses on all the desired platforms.

Windows

Gather and package the following files and distribute them to the deployment machine.

Component Description
MATLAB Runtime installer Self-extracting MATLAB Runtime library utility; platform-

dependent file that must correspond to the end user's platform.
Run the mcrinstaller command to obtain name of executable.

magicsquare Application; magicsquare.exe for Windows

UNIX

Distribute and package your standalone application on UNIX by packaging the following files and
distributing them to the deployment machine.

Component Description
MATLAB Runtime installer MATLAB Runtime library archive; platform-dependent file that must

correspond to the end user's platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

Maci64

Distribute and package your standalone application on 64-bit Macintosh by copying, tarring, or
zipping as described in the following table.

 Deploying Standalone Applications

11-3

Component Description
MATLAB Runtime installer MATLAB Runtime library archive; platform-dependent file that must

correspond to the end user's platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application
magicsquare.app Application bundle

Assuming foo is a folder within your current folder:

• Distribute by copying:

cp -R myapp.app foo
• Distribute by tarring:

tar -cvf myapp.tar myapp.app
cd foo
tar -xvf../ myapp.tar

• Distribute by zipping:

zip -ry myapp myapp.app
cd foo
unzip ..\myapp.zip

Running the Application
These steps describe the process that end users must follow to install and run the application on their
machines.

Preparing Your Machines

Install the MATLAB Runtime by running the mcrinstaller command to obtain name of the
executable or binary. For more information on running the MATLAB Runtime installer utility and
modifying your system paths, see “MATLAB Runtime” on page 9-2.

Executing the Application

Run the magicsquare standalone application from the system prompt and provide a number
representing the size of the desired magic square, for example, 4.

magicsquare 4

The results are displayed as:

ans =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Note Input arguments you pass to and from a system prompt are treated as string input and you
need to consider that in your application.

11 Standalone Applications

11-4

Note Before executing your MATLAB Compiler generated executable, set the LD_PRELOAD
environment variable to \lib\libgcc_s.so.1.

Executing the Application on 64-Bit Macintosh (Maci64)

For 64-bit Macintosh, you run the application through the bundle:

magicsquare.app/Contents/MacOS/magicsquare

 Deploying Standalone Applications

11-5

Troubleshooting

• “Testing Failures” on page 12-2
• “Investigate Deployed Application Failures” on page 12-4

12

Testing Failures
After you have successfully compiled your application, the next step is to test it on a development
machine and deploy it on a target machine. Typically the target machine does not have a MATLAB
installation and requires that the MATLAB Runtime be installed. A distribution includes all of the files
that are required by your application to run, which include the executable, deployable archive and
the MATLAB Runtime.

Test the application on the development machine by running the application against the MATLAB
Runtime shipped with MATLAB Compiler. This will verify that library dependencies are correct, that
the deployable archive can be extracted and that all MATLAB code, MEX—files and support files
required by the application have been included in the archive. If you encounter errors testing your
application, the questions in the column to the right may help you isolate the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application's execution by issuing !application-
name at the MATLAB prompt. If your application executes within MATLAB but not from outside, this
can indicate an issue with the system PATH variable.

Does the application begin execution and result in MATLAB or other errors?

Ensure that you included all necessary files when compiling your application (see the readme.txt
file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically included by MATLAB
Compiler; however, functions that are not explicitly called, for example through EVAL, need to be
included at compilation using the -a switch of the mcc command. Also, any support files
like .mat, .txt, or .html files need to be added to the archive with the -a switch. There is a
limitation on the functionality of MATLAB and associated toolboxes that can be compiled. Check the
documentation to see that the functions used in your application's MATLAB files are valid. Check the
file mccExcludedFiles.log on the development machine. This file lists all functions called from
your application that cannot be compiled.

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an environment where multiple
versions of MATLAB are installed. Some older versions of MATLAB may not be fully compatible with
this architecture.

On Windows, ensure that the matlabroot\runtime\win64 of the version of MATLAB in which you
are compiling appears ahead of matlabroot\runtime\win64 of other versions of MATLAB installed
on the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH on Linux) match. Do
this by comparing the outputs of !printenv at the MATLAB prompt and printenv at the shell
prompt. Using this path allows you to use mcc from the operating system command line.

If you are testing a standalone executable or shared library and driver application, did you
install the MATLAB Runtime?

All shared libraries required for your standalone executable or shared library are contained in the
MATLAB Runtime. Installing the MATLAB Runtime is required for any of the deployment targets.

12 Troubleshooting

12-2

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or mclmcrrt7x.so are generally
caused by incorrect installation of the MATLAB Runtime. It is also possible that the MATLAB Runtime
is installed correctly, but that the PATH, LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables is set
incorrectly. For information on installing the MATLAB Runtime on a deployment machine, see “Install
and Configure the MATLAB Runtime” on page 7-3.

Caution Do not solve these problems by moving libraries or other files within the MATLAB Runtime
folder structure. The system is designed to accommodate different MATLAB Runtime versions
operating on the same machine. The folder structure is an important part of this feature.

Does your system’s graphics card support the graphics application?

In situations where the existing hardware graphics card does not support the graphics application,
you should use software OpenGL. OpenGL libraries are visible for an application by appending
matlab/sys/opengl/lib/arch to the LD_LIBRARY_PATH. For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

For issues with MATLAB graphics in Linux, set the environment variable LD_LIBRARY_PATH to:

setenv LD_LIBRARY_PATH $MATLAB/sys/opengl/lib/glnxa64:$LD_LIBRARY_PATH

Is OpenGL properly installed on your system?

When searching for OpenGL libraries, the MATLAB Runtime first looks on the system library path. If
OpenGL is not found there, it will use the LD_LIBRARY_PATH environment variable to locate the
libraries. If you are getting failures due to the OpenGL libraries not being found, you can append the
location of the OpenGL libraries to the LD_LIBRARY_PATH environment variable. For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

 Testing Failures

12-3

Investigate Deployed Application Failures
After the application is working on the test machine, failures can be isolated in end-user deployment.
The end users of your application need to install the MATLAB Runtime on their machines. The
MATLAB Runtime includes a set of shared libraries that provides support for all features of MATLAB.
If your application fails during end-user deployment, the following questions in the column to the
right may help you isolate the problem.

Note There are a number of reasons why your application might not deploy to end users, after
running successfully in a test environment. For a detailed list of guidelines for writing MATLAB code
that can be consumed by end users, see “Write Deployable MATLAB Code” on page 5-8

Is the MATLAB Runtime installed?

All shared libraries required for your standalone executable or shared library are contained in the
MATLAB Runtime. Installing the MATLAB Runtime is required for any of the deployment targets. See
“Install and Configure the MATLAB Runtime” on page 7-3 for complete information.

If running on UNIX or Mac, did you update the dynamic library path after installing the
MATLAB Runtime?

For information on installing the MATLAB Runtime on a deployment machine, see “Install and
Configure the MATLAB Runtime” on page 7-3.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or mclmcrrt7x.so are generally
caused by incorrect installation of the MATLAB Runtime. It is also possible that the MATLAB Runtime
is installed correctly, but that the PATH, LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are
set incorrectly. For information on installing the MATLAB Runtime on a deployment machine, see
“Install and Configure the MATLAB Runtime” on page 7-3.

Caution Do not solve these problems by moving libraries or other files within the MATLAB Runtime
folder structure. The system is designed to accommodate different MATLAB Runtime versions
operating on the same machine. The folder structure is an important part of this feature.

Do you have write access to the directory the application is installed in?

The first operation attempted by a compiled application is extraction of the deployable archive. If the
archive is not extracted, the application cannot access the compiled MATLAB code and the
application fails. If the application has write access to the installation folder, a subfolder named
application-name_mcr is created the first time the application is run. After this subfolder is
created, the application no longer needs write access for subsequent executions.

Are you executing a newer version of your application?

When deploying a newer version of an executable, both the executable needs to be redeployed, since
it also contains the embedded deployable archive. The deployable archive is keyed to a specific
compilation session. Every time an application is recompiled, a new, matched deployable archive is
created. As above, write access is required to expand the new deployable archive. Deleting the

12 Troubleshooting

12-4

existing application-name_mcr folder and running the new executable will verify that the
application can expand the new deployable archive.

 Investigate Deployed Application Failures

12-5

Limitations and Restrictions

• “Limitations” on page 13-2
• “Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK ”

on page 13-7

13

Limitations

Packaging MATLAB and Toolboxes
MATLAB Compiler supports the full MATLAB language and almost all toolboxes based on MATLAB
except:

• Most of the prebuilt graphical user interfaces included in MATLAB and its companion toolboxes.
• Functionality that cannot be called directly from the command line.
• Symbolic Math Toolbox™
• Cross-platform compatibility of applications. For example, you cannot run an application compiled

in Windows on Linux.

Compiled applications can run only on operating systems that run MATLAB. However, components
generated by the MATLAB Compiler cannot be used in MATLAB. Also, since the MATLAB Runtime is
approximately the same size as MATLAB, applications built with MATLAB Compiler need specific
storage memory and RAM to operate. For the most up-to-date information about system
requirements, go to the MathWorks website.

To see the full list of MATLAB Compiler limitations, visit: https://www.mathworks.com/
products/compiler/compiler_support.html.

Note For a list of functions not supported by the MATLAB Compiler See “Functions Not Supported
for Compilation by MATLAB Compiler and MATLAB Compiler SDK” on page 13-7.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler creates a standalone application, it packages the MATLAB files that you
specify on the command line. In addition, it includes any other MATLAB files that your packaged
MATLAB files call. MATLAB Compiler uses a dependency analysis, which determines all the functions
on which the supplied MATLAB files, MEX-files, and P-files depend.

Note If the MATLAB file associated with a p-file is unavailable, the dependency analysis cannot
discover the p-file dependencies.

The dependency analysis cannot locate a function if the only place the function is called in your
MATLAB file is a call to the function in either of the following:

• Callback string
• Character array passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from the dependency analyzer in .mat files that are
loaded by compiled applications. Use the mcc -a argument or the %#function pragma to
identify .mat file classes or functions that are supported by the load command.

MATLAB Compiler does not look in these text character arrays for the names of functions to package.

13 Limitations and Restrictions

13-2

https://www.mathworks.com/support/sysreq.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html

Symptom

Your application runs, but an interactive user interface element, such as a push button, does not
work. The compiled application issues this error message:

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function
 change_colormap from FEVAL in stand-alone mode.

Workaround

There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as character arrays
• Specifying callbacks with function handles
• Using the -a option

Specifying Callbacks as Character Arrays

Create a list of all the functions that are specified only in callback character arrays and pass these
functions using separate %#function pragma statements. This overrides the product dependency
analysis and instructs it to explicitly include the functions listed in the %#function pragmas.

For example, the call to the change_colormap function in the sample application my_test
illustrates this problem. To make sure MATLAB Compiler processes the change_colormap MATLAB
file, list the function name in the %#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
 'Style', 'pushbutton',...
 'Position',[10 10 133 25],...
 'String', 'Make Black & White',...
 'CallBack','change_colormap');

Specifying Callbacks with Function Handles

To specify the callbacks with function handles, use the same code as in the example above, and
replace the last line with:

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB Programming
Fundamentals documentation.

Using the -a Option

Instead of using the %#function pragma, you can specify the name of the missing MATLAB file on
the MATLAB Compiler command line using the -a option.

 Limitations

13-3

Finding Missing Functions in a MATLAB File
To find functions in your application that need to be listed in a %#function pragma, search your
MATLAB file source code for text specified as callback character arrays or as arguments to the
feval, fminbnd, fminsearch, funm, and fzero functions or any ODE solvers.

To find text used as callback character array, search for the characters “Callback” or “fcn” in your
MATLAB file. This search finds all the Callback properties defined by graphics objects, such as
uicontrol and uimenu. In addition, it finds the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on the UNIX System
Several warnings might appear when you run a standalone application on the UNIX system.

To suppress the libjvm.so warning, set the dynamic library path properly for your platform. See
“MATLAB Runtime Path Settings for Run-Time Deployment” on page 14-2.

You can also use the compiler option -R -nojvm to set your application's nojvm run-time option, if
the application is capable of running without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you get a run-time error.

Cannot Create the Output File
If you receive this error, there are several possible causes to consider.

Can't create the output file filename

Possible causes include:

• Lack of write permission for the folder where MATLAB Compiler is attempting to write the file
(most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler is attempting to write the file (most
likely the current working folder).

• If you are creating a standalone application and have been testing it, it is possible that a process is
running and is blocking MATLAB Compiler from overwriting it with a new version.

No MATLAB File Help for Packaged Functions
If you create a MATLAB file with self-documenting online help and package it, the results of following
command are unintelligible:

help filename

Note For performance reasons, MATLAB file comments are stripped out before MATLAB Runtime
encryption.

13 Limitations and Restrictions

13-4

No MATLAB Runtime Versioning on Mac OS X
The feature that allows you to install multiple versions of the MATLAB Runtime on the same machine
is not supported on Mac OS X. When you receive a new version of MATLAB, you must recompile and
redeploy all your applications and components. Also, when you install a new MATLAB Runtime on a
target machine, you must delete the old version of the MATLAB Runtime and install the new one. You
can have only one version of the MATLAB Runtime on the target machine.

Older Neural Networks Not Deployable with MATLAB Compiler
Loading networks saved from older Deep Learning Toolbox versions requires some initialization
routines that are not deployable. Therefore, these networks cannot be deployed without first being
updated.

For example, deploying with Deep Learning Toolbox Version 5.0.1 (2006b) and MATLAB Compiler
Version 4.5 (R2006b) yields the following errors at run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
 function "initwb".
Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple Arguments in
Packaged Mode
In compiled mode, only one argument can be present in a call to the MATLAB printdlg function (for
example, printdlg(gcf)).

You cannot receive an error when making at call to printdlg with multiple arguments. However,
when an application containing the multiple-argument call is packaged, the action fails with the
following error message:

Error using = => printdlg at 11
PRINTDLG requires exactly one argument

Packaging a Function with which Does Not Search Current Working
Folder
Using which, as in this example, does not cause the current working folder to be searched in
deployed applications. In addition, it may cause unpredictable behavior of the open function.

function pathtest
which myFile.mat
open('myFile.mat')

Use one of the following solutions as an alternative:

• Use the pwd function to explicitly point to the file in the current folder, as follows:

 Limitations

13-5

open([pwd '/myFile.mat'])

• Rather than using the general open function, use load or other specialized functions for your
particular file type, as load explicitly checks for the file in the current folder. For example:

load myFile.mat

• Include your file in the Files required for your application to run area of the Compiler app or
the -a flag using mcc.

Restrictions on Using C++ SetData to Dynamically Resize an mwArray
You cannot use the C++ SetData method to dynamically resize mwArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SetData to increase the size of the array to a length of five elements.

Accepted File Types for Packaging
The valid and invalid file types for packaging using deployment apps are as follows:

Target
Application

Valid File Types Invalid File Types

Standalone
Application

MATLAB MEX files, MATLAB scripts,
and MATLAB functions. These files must
have a single entry point.

MATLAB class files, protected function
files (.p files), Java functions, COM
or .NET components, and data files.
MATLAB class files can be dependent
files.

Library
Compiler

MATLAB MEX files and MATLAB
functions. These files must have a single
entry point.

MATLAB scripts, MATLAB class files,
protected function files (.p files), Java
functions, COM or .NET components, and
data files. MATLAB class files can be
dependent files.

MATLAB
Production
Server

MATLAB MEX files and MATLAB
functions. These files must have a single
entry point.

MATLAB scripts, MATLAB class files,
protected function files (.p files), Java
functions, COM or .NET components, and
data files. MATLAB class files can be
dependent files.

See Also

More About
• “Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK”

on page 13-7

13 Limitations and Restrictions

13-6

Functions Not Supported for Compilation by MATLAB Compiler
and MATLAB Compiler SDK

Note Due to the number of active and ever-changing list of MathWorks products and functions, this
is not a complete list of functions that cannot be compiled. If you have a question as to whether a
specific MathWorks product's function is able to be compiled or not, the definitive source is that
product's documentation. For an updated list of such functions, see Support for MATLAB and
Toolboxes.

Functions that cannot be compiled fall into the following categories:

• Functions that print or report MATLAB code from a function, such as the MATLAB help function
or debug functions.

• Simulink functions, in general.
• Functions that require a command line, such as the MATLAB lookfor function.
• clc, home, and savepath, which do not do anything in deployed mode.

In addition, there are functions and programs that have been identified as non-deployable due to
licensing restrictions.

Only certain tools that allow run-time manipulation of figures are supported for compilation, for
example, adding legends, selecting data points, zooming in and out, etc.

mccExcludedFiles.log lists all the functions and files excluded by mcc. It is created after each
attempted build.

 Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

13-7

https://www.mathworks.com/products/compiler/supported/compiler_support.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html

List of Unsupported Functions and Programs

add_block
add_line
checkcode
close_system
colormapeditor
commandwindow
Control System Toolbox™ prescale GUI
createClassFromWsdl
dbclear
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
delete_block
delete_line
depfun
doc
echo
edit
fields
figure_palette
get_param
help
home
inmem
keyboard
linkdata
linmod
matlab.unittest.TestSuite.fromProject
mislocked
mlock
more
munlock

13 Limitations and Restrictions

13-8

new_system
open
open_system
pack
pcode
plotbrowser
plotedit
plottools
profile
profsave
propedit
propertyeditor
publish
rehash
restoredefaultpath
run
segment
set_param
sldebug
type

 Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

13-9

Reference Information

• “MATLAB Runtime Path Settings for Run-Time Deployment” on page 14-2
• “MATLAB Compiler Licensing” on page 14-4
• “Deployment Product Terms” on page 14-5

14

MATLAB Runtime Path Settings for Run-Time Deployment

In this section...
“General Path Guidelines” on page 14-2
“Path for Java Applications on All Platforms” on page 14-2
“Windows Path for Run-Time Deployment” on page 14-2
“Linux Paths for Run-Time Deployment” on page 14-3
“OS X Paths for Run-Time Deployment” on page 14-3

General Path Guidelines
Regardless of platform, be aware of the following guidelines with regards to placing specific folders
on the path:

• Always avoid including arch on the path. Failure to do so may inhibit ability to run multiple
MATLAB Runtime instances.

• Ideally, set the environment in a separate shell script to avoid run-time errors caused by path-
related issues.

Path for Java Applications on All Platforms
When your users run applications that contain compiled MATLAB code, you must instruct them to set
the path so that the system can find the MATLAB Runtime.

Note When you deploy a Java application to end users, they must set the class path on the target
machine.

The system needs to find .jar files containing the MATLAB libraries. To tell the system how to locate
the .jar files it needs, specify a classpath either in the javac command or in your system
environment variables.

Windows Path for Run-Time Deployment
The following folder should be added to the system path:

mcr_root\version\runtime\win64

mcr_root refers to the complete path where the MATLAB Runtime library archive files are installed
on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install the MATLAB Runtime.

Note If you are running the MATLAB Runtime installer on a shared folder, be aware that other users
of the share may need to alter their system configuration.

14 Reference Information

14-2

Linux Paths for Run-Time Deployment
Use these setenv commands to set your MATLAB Runtime paths.
setenv LD_LIBRARY_PATH
 mcr_root/version/runtime/glnxa64:
 mcr_root/version/bin/glnxa64:
 mcr_root/version/sys/os/glnxa64:
 mcr_root/version/sys/opengl/lib/glnxa64

OS X Paths for Run-Time Deployment
Use these setenv commands to set your MATLAB Runtime paths.
setenv DYLD_LIBRARY_PATH
 mcr_root/version/runtime/maci64:
 mcr_root/version/bin/maci64:
 mcr_root/version/sys/os/maci64

 MATLAB Runtime Path Settings for Run-Time Deployment

14-3

MATLAB Compiler Licensing

Using MATLAB Compiler Licenses for Development
You can run MATLAB Compiler from the MATLAB command prompt (MATLAB mode) or the DOS/
UNIX prompt (standalone mode).

MATLAB Compiler uses a lingering license. This has different behavior in MATLAB mode and
standalone mode.

Running MATLAB Compiler in MATLAB Mode

When you run MATLAB Compiler from “inside” of the MATLAB environment, that is, you run mcc
from the MATLAB command prompt, you hold the MATLAB Compiler license as long as MATLAB
remains open. To give up the MATLAB Compiler license, exit MATLAB.

Running MATLAB Compiler in Standalone Mode

If you run MATLAB Compiler from a DOS or UNIX prompt, you are running from “outside” of
MATLAB. In this case, MATLAB Compiler

• Does not require MATLAB to be running on the system where MATLAB Compiler is running
• Gives the user a dedicated 30-minute time allotment during which the user has complete

ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute time period as the sole
owner of the MATLAB Compiler license. Anytime during the 30-minute segment, if the same user
requests MATLAB Compiler , the user gets a new 30-minute allotment. When the 30-minute interval
has elapsed, if a different user requests MATLAB Compiler , the new user gets the next 30-minute
interval.

When a user requests MATLAB Compiler and a license is not available, the user receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are available, the user gets
the license and no message is displayed. The best way to guarantee that all MATLAB Compiler users
have constant access to MATLAB Compiler is to have an adequate supply of licenses for your users.

14 Reference Information

14-4

Deployment Product Terms
A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively integrated into
a Microsoft Excel application. Add-ins are front-ends for COM components, usually written in some
form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and interfaces that is used to
develop software applications. Typically an API is used to provide access to specific functionality. See
MWArray.

Application — An end user-system into which a deployed functions or solution is ultimately
integrated. Typically, the end goal for the deployment customer is integration of a deployed MATLAB
function into a larger enterprise environment application. The deployment products prepare the
MATLAB function for integration by wrapping MATLAB code with enterprise-compatible source code,
such as C, C++, C# (.NET), F#, and Java code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented languages, that
is a prototype for an object in an object-oriented language. It is analogous to a derived type in a
procedural language. A class is a set of objects which share a common structure and behavior.
Classes relate in a class hierarchy. One class is a specialization (a subclass) of another (one of its
superclasses) or comprises other classes. Some classes use other classes in a client-server
relationship. Abstract classes have no members, and concrete classes have one or more members.
Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB code involves
generating a binary that wraps around MATLAB code, enabling it to execute in various computing
environments. For example, when MATLAB code is compiled into a Java package, a Java wrapper
provides Java code that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a Microsoft Excel
add-in. In MATLAB Compiler SDK, an executable component, to be integrated with Microsoft COM
applications.

Console application — Any application that is executed from a system command prompt window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a MATLAB deployment
customer is using type-safe interfaces, data marshaling—as from mathematical data types to
MathWorks data types such as represented by the MWArray API—must be performed manually, often
at great cost.

 Deployment Product Terms

14-5

Deploy — The act of integrating MATLAB code into a larger-scale computing environment, usually to
an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary generated by
MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable package. All MATLAB-based
content in the deployable archive uses the Advanced Encryption Standard (AES) cryptosystem. See
“Additional Details” on page 5-6.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept for Windows.
Using DLLs is much preferred over the previous technology of static (or non-dynamic) libraries,
which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and sometimes
called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used to hold data.
Properties allow users to access class variables as if they were accessing member fields directly,
while actually implementing that access through a class method.

I

Integration — Combining deployed MATLAB code's functionality with functionality that currently
exists in an enterprise application. For example, a customer creates a mathematical model to forecast
trends in certain commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance) the deployed financial
model must be integrated with existing C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server software, see
MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java Archive) aggregates many files into
one. Software developers use JARs to distribute Java applications or libraries, in the form of classes
and associated metadata and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built into MATLAB
software.

JDK — The Java Development Kit is a product which provides the environment required for
programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK) required to run Java
programs. It comprises the Java Virtual Machine, the Java platform core classes, and supporting files.

14 Reference Information

14-6

It does not include the compiler, debugger, or other tools present in the JDK™. The JRE™ is the
smallest set of executables and files that constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when added
vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries. MATLAB uses these
libraries to enable the execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production Server
software, you have the option of specifying more than one MATLAB Runtime session, using the --
num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software, clients are
applications written in a language supported by MATLAB Production Server that call deployed
functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production Server
containing at least one server and one client. Each configuration of the software usually contains a
unique set of values in the server configuration file, main_config (MATLAB Production Server).

MATLAB Production Server Server Instance — A logical server configuration created using the mps-
new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of MATLAB programs
within your production systems, enabling you to incorporate numerical analytics in enterprise
applications. When you use this software, web, database, and enterprise applications connect to
MATLAB programs running on MATLAB Production Server via a lightweight client library, isolating
the MATLAB programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source files into
standalone applications or shared libraries. For more information, see the mbuild function reference
page.

mcc — The MATLAB command that invokes the compiler. It is the command-line equivalent of using
the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative information to
a .NET class. For example, in the context of client programming with MATLAB Production Server
software, you specify method attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of standard
mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface (API) for exchanging
data between your application and MATLAB. Using MWArray, you marshal data from traditional
mathematical types to a form that can be processed and understood by MATLAB data type mxArray.

 Deployment Product Terms

14-7

There are different implementations of the MWArray proxy for each application programming
language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB Runtime and
other files, into an installer that can be distributed to others. The compiler apps place the installer in
the for_redistribution subfolder. In addition to the installer, the compiler apps generate a
number of lose artifacts that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB Production Server
software. Servers created with the software do not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is scheduled on a pool, or
group, of available threads. The server configuration file option --num-threads sets the size of that
pool (the number of available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error messages
relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually are written to
automate repetitive operations through computer processing. Enterprise system applications usually
consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an interface to
something else. For example, MWArray is a proxy for programmers who need to access the
underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast loading into
Windows applications. Dynamic-link libraries (DLLs) are Microsoft's implementation of the shared
library concept for Microsoft Windows.

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can create a shared
MATLAB Runtime instance, also known as a singleton. When you invoke MATLAB Compiler with the -
S option through the compiler (using either mcc or a compiler app), a single MATLAB Runtime
instance is created for each COM component or Java package in an application. You reuse this
instance by sharing it among all subsequent class instances. Such sharing results in more efficient
memory usage and eliminates the MATLAB Runtime startup cost in each subsequent class
instantiation. All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET assemblies.
MATLAB Compiler creates singletons by default for the COM components used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB functions often carry
state in the form of variable values. The MATLAB workspace itself also maintains information about
global variables and path settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that use such functions.

14 Reference Information

14-8

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you access using
textual field designators. Fields are data containers that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as Microsoft
Visual Studio®.

T

Thread — A portion of a program that can run independently of and concurrently with other portions
of the program. See pool for additional information on managing the number of processing threads
available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the MWArray type
from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file used to
distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag libraries, and static
web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web. Using the
WebFigures feature, you display MATLAB figures on a website for graphical manipulation by end
users. This enables them to use their graphical applications from anywhere on the web, without the
need to download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication Foundation™ is an
application programming interface in the .NET Framework for building connected, service-oriented,
web-centric applications. WCF is designed in accordance with service oriented architecture
principles to support distributed computing where services are consumed by client applications.

 Deployment Product Terms

14-9

Functions

15

%#exclude
Ignore a file or function dependency during dependency analysis while executing the mcc command

Syntax
%#exclude fileOrFunction1 [fileOrFunction2 ... fileOrFunctionN]

Description
%#exclude fileOrFunction1 [fileOrFunction2 ... fileOrFunctionN] pragma informs
the mcc command that the specified file(s) or function(s) need to be excluded from dependency
analysis during compilation.

Examples

Using %#exclude Within a MATLAB Function

Create a MATLAB function named testExclusion that includes a %#exclude pragma to determine
which files are included and which ones are excluded while executing the mcc command with various
options.

function testExclusion()

%#exclude foo.mat
load foo.mat
load bar.mat

%#function foo.txt
fid = fopen('foo.txt');
fclose(fid)

• Executing mcc -m testExclusion.m results in:

• bar.mat and foo.txt being included during dependency analysis
• foo.mat being excluded

• Executing mcc -m testExclusion.m -X results in:

• foo.txt being included during dependency analysis
• bar.mat and foo.mat being excluded

• Executing mcc -m testExclusion.m -X -a foo.mat results in:

• foo.mat and foo.txt being included during dependency analysis
• bar.mat being excluded

The -a option in the mcc command is used to add files. The %#function pragma is used to inform
the mcc command that the specified function(s) should be included in the compilation.

15 Functions

15-2

In the last case, -a option takes precedence over the %#exclude pragma.

See Also
mcc

Introduced in R2020a

 %#exclude

15-3

%#function
Pragma to help MATLAB Compiler locate functions called through feval, eval, Handle Graphics
callback, or objects loaded from MAT-files

Syntax
%#function function1 [function2 ... functionN]

%#function object_constructor

Description
The %#function pragma informs MATLAB Compiler that the specified function(s) will be called
through an feval, eval,Handle Graphics® callback, or objects loaded from MAT-files.

Use the %#function pragma in standalone applications to inform MATLAB Compiler that the
specified function(s) should be included in the compilation, whether or not MATLAB Compiler's
dependency analysis detects the function(s). It is also possible to include objects by specifying the
object constructor.

Without this pragma, the product's dependency analysis will not be able to locate and compile all
MATLAB files used in your application. This pragma adds the top-level function as well as all the local
functions in the file to the compilation.

Examples
Example 1

 function foo
 %#function bar

 feval('bar');

 end %function foo

By implementing this example, MATLAB Compiler is notified that function bar will be included in the
compilation and is called through feval.

Example 2

function foo
 %#function bar foobar

 feval('bar');
 feval('foobar');

 end %function foo

In this example, multiple functions (bar and foobar) are included in the compilation and are called
through feval.

15 Functions

15-4

Example 3

function foo
 %#function ClassificationSVM

 load('svm-classifier.mat');
 num_dimensions = size(svm_model.PredictorNames, 2);

 end %function foo

In this example, an object from the class ClassificationSVM is loaded from a MAT-file. For more
information, see “MATLAB Data Files in Compiled Applications”.

Introduced before R2006a

 %#function

15-5

applicationCompiler
Build and package functions into standalone applications

Syntax
applicationCompiler
applicationCompiler project_name

Description
applicationCompiler opens the MATLAB standalone compiler for the creation of a new compiler
project. For more information on the Application Compiler app, see Application Compiler.

applicationCompiler project_name opens the MATLAB standalone compiler app with the
project preloaded.

Examples

Create a New Standalone Application Project

Open the application compiler to create a new project.

applicationCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved MATLAB Compiler project. The project must be on the current
path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use the mcc command,
and to package and create an installer, use the compiler.package.installer function.

See Also
compiler.package.installer | deploytool | mcc

Introduced in R2013b

15 Functions

15-6

ctfroot
Location of files related to deployed application

Syntax
root = ctfroot

Description
root = ctfroot returns the name of the folder where the deployable archive for the application is
expanded.

Use this function to access any file that the user would have included in their project (excluding the
ones in the packaging folder).

Examples
Determine location of deployable archive

appRoot = ctfroot;

Output Arguments
root — Path to expanded deployable archive
character vector

Path to expanded deployable archive returned as a character vector in the form:
application_name_mcr. .

Introduced in R2006a

 ctfroot

15-7

deploytool
Compile and package functions for external deployment

Syntax
deploytool
deploytool project_name
deploytool -build project_name
deploytool -package project_name

Description
deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project preloaded.

deploytool -build project_name runs the appropriate compiler app to build the specified
project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and package
the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

deploytool -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Name of the project to be compiled, specified as a character array or string.The project must be on
the current path.

Introduced in R2006b

15 Functions

15-8

getmcruserdata
Retrieve MATLAB array value associated with a given key

Syntax
value = getmcruserdata(key)

Description
value = getmcruserdata(key) returns MATLAB data associated with the string key in the
current MATLAB Runtime instance. If there is no data associated with the key, it returns an empty
matrix.

This function is part of the MATLAB Runtime User Data interface API. It is available both in MATLAB
and in deployed applications created with MATLAB Compiler and MATLAB Compiler SDK.

Examples
Get the magic square data associated with the string 'magic' in the current instance of the MATLAB
Runtime.

value = magic(3);
setmcruserdata('magic', value);
getmcruserdata('magic')

ans =
 8 1 6
 3 5 7
 4 9 2

Input Arguments
key — Key associated with MATLAB data
string

key is the MATLAB string with which MATLAB data value is associated within the current instance
of the MATLAB Runtime.

Output Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

value is the MATLAB data associated with input string key for the current instance of the MATLAB
Runtime.

See Also
setmcruserdata

 getmcruserdata

15-9

Introduced in R2008b

15 Functions

15-10

isdeployed
Determine whether code is running in deployed or MATLAB mode

Syntax
x = isdeployed

Description
x = isdeployed returns true (1) when the function is running in deployed mode and false (0) if it is
running in a MATLAB session.

If you include this function in an application and compile the application with MATLAB Compiler, the
function will return true when the application is run in deployed mode. If you run the application
containing this function in a MATLAB session, the function will return false.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true and false as appropriate for MEX and SIM targets
• Returns false for other targets

Introduced before R2006a

 isdeployed

15-11

ismcc
Test if code is running during compilation process (using mcc)

Syntax
x = ismcc

Description
x = ismcc returns true when the function is being executed by mcc dependency checker and false
otherwise.

When this function is executed by the compilation process started by mcc, it will return true. This
function will return false when executed within MATLAB as well as in deployed mode. To test for
deployed mode execution, use isdeployed. This function should be used to guard code in
matlabrc, or hgrc (or any function called within them, for example startup.m in the example on
this page), from being executed by MATLAB Compiler (mcc) or any of the MATLAB Compiler SDK
targets.

In a typical example, a user has ADDPATH calls in their MATLAB code. These can be guarded from
executing using ismcc during the compilation process and isdeployed for the deployed application
as shown in the example on this page.

Examples
`% startup.m
 if ~(ismcc || isdeployed)
 addpath(fullfile(matlabroot,'work'));
 end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true and false as appropriate for MEX and SIM targets.
• Returns false for other targets.

See Also
isdeployed | mcc

Introduced in R2008b

15 Functions

15-12

libraryCompiler
Build and package functions for use in external applications

Syntax
libraryCompiler
libraryCompiler project_name

Description
libraryCompiler opens the Library Compiler app for the creation of a new compiler project

libraryCompiler project_name opens the Library Compiler app with the project preloaded.

Examples

Create a New Project

Open the Library Compiler app to create a new project.

libraryCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use the mcc command,
and to package and create an installer, use the compiler.package.installer function.

Introduced in R2013b

 libraryCompiler

15-13

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -m options mfilename
mcc -e options mfilename

mcc -W 'excel:addin_name,className,version=version_number' -T link:lib
options mfilename1 mfilename2...mfilenameN

mcc -H -W hadoop:archiveName,CONFIG:configFile

mcc -m options mfilename

Description
mcc options mfilename1 mfilename2...mfilenameN compiles the functions as specified by
the options.

The options used depend on the intended results of the compilation. For information on compiling:

• C/C++ shared libraries, .NET assemblies, Java packages, or Python packages see mcc for
MATLAB Compiler SDK

• MATLAB Production Server deployable archives or Excel add-ins for MATLAB Production Server
see mcc for MATLAB Compiler SDK

Standalone Application

mcc -m options mfilename compiles the function into a standalone application.

This is equivalent to mcc -W main -T link:exe.

mcc -e options mfilename compiles the function into a standalone application that does not
open an MS-DOS® command window.

This syntax is equivalent to -W WinMain -T link:exe.

Excel Add-In

mcc -W 'excel:addin_name,className,version=version_number' -T link:lib
options mfilename1 mfilename2...mfilenameN creates a Microsoft Excel add-in from the
specified files.

• addin_name — Specifies the name of the addin and its namespace, which is a period-separated
list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the addin_name as the default. If specified, className, needs to be different from
mfilename.

15 Functions

15-14

• version_number — Specifies the version number of the add-in file as major.minor.bug.build
in the file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number, by default, to 1.0.0.0.

• major — Specifies the major version number. If you do not specify a number, mcc sets major
to 0.

• minor — Specifies the minor version number. If you do not specify a number, mcc sets minor
to 0.

• bug— Specifies the bug fix maintenance release number. If you do not specify a number, mcc
sets bug to 0.

• build— Specifies the build number. If you do not specify a number, mcc sets build to 0.

Note Excel add-ins can be created only in MATLAB running on Windows.

Note Remove the single quotes around 'excel:addin_name,className,version' when
executing the mcc command from a DOS prompt.

MapReduce Applications on Hadoop

mcc -H -W hadoop:archiveName,CONFIG:configFile generates a deployable archive that can
be run as a job by Hadoop.

• archiveName — Specifies the name of the generated archive.
• configFile — Specifies the path to the configuration file for creating a deployable archive. For

more information, see “Configuration File for Creating Deployable Archive Using the mcc
Command”.

Tip You can issue the mcc command either at the MATLAB command prompt or the Windows or
Linux system command-line.

Simulink Simulations (Requires Simulink Compiler)

mcc -m options mfilename compiles a MATLAB application containing a Simulink simulation
into a standalone application. For more information, see “Create and Deploy a Script with Simulink
Compiler” (Simulink Compiler).

Examples
Create a standalone application

mcc -m magic.m

Create a standalone application that does not open the Command shell (Windows only)

mcc -e magic.m

Create a standalone application with a system-level file version number (Windows only)

Create a standalone application in Windows with version number 3.4.1.5.

 mcc

15-15

mcc -W 'main:,version=3.4.1.5' -T link:exe mymagic.m

Create an Excel add-in

mcc -W 'excel:myAddin,myClass,1.0' -T link:lib magic.m

Create an Excel add-in with a system-level file version number (Windows only)

Create an Excel add-in in Windows with version number 5.2.1.7.

mcc -W 'excel:myAddin,myClass,version=5.2.1.7' -T link:lib -b class{myClass:mymagic.m}

Create a COM component

Create a COM component in Windows with version number 7.10.1.3.

mcc -W 'com:myCOMComponent,myClass,version=7.10.1.3' -T link:lib class{myClass:mymagic.m}

Create an Excel add-in for MATLAB Production Server

mcc -W 'mpsxl:myDeployableArchvie,myExcelClass,version=1.0' -T link:lib mymagic.m

Create a Standalone Application for a Simulink Simulation (Requires Simulink Compiler)

To create a standalone application for a Simulink simulation:

Create a Simulink model using Simulink. This example uses the model sldemo_suspn_3dof that
ships with Simulink.

Create a MATLAB application that uses APIs from Simulink Compiler to simulate the model. For more
information, see “Deploy Simulations with Tunable Parameters” (Simulink Compiler).
function deployParameterTuning(outputFile, mbVariable)

 if ischar(mbVariable) || isstring(mbVariable)
 mbVariable = str2double(mbVariable);
 end

 if isnan(mbVariable) || ~isa(mbVariable, 'double') || ~isscalar(mbVariable)
 disp('mb must be a double scalar or a string or char that can be converted to a double scalar');
 end

 in = Simulink.SimulationInput('sldemo_suspn_3dof');
 in = in.setVariable('Mb', mbVariable);
 in = simulink.compiler.configureForDeployment(in);
 out = sim(in);

 save(outputFile, 'out');

end

Use mcc to create a standalone application from the MATLAB application.

mcc -m deployParameterTuning.m

Input Arguments
mfilename — File to be compiled
filename

File to be compiled, specified as a character vector or string scalar.

15 Functions

15-16

mfilename1 mfilename2...mfilenameN — Files to be compiled
list of filenames

One or more files to be compiled, specified as a space-separated list of filenames.

options — Options for customizing the output
-a | -b | -B | -c | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -R | -S | -T | -u | -U | -v | -w | -W | -X |
-Y

Options for customizing the output, specified as a list of character vectors or string scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added. Multiple -a
options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path, so
specifying the full path name is optional. These files are not passed to mbuild, so you can include
files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are added
recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the deployable
archive. The folder subtree in testdir is preserved in the deployable archive.

If the filename includes a wildcard pattern, only the files in the folder that match the pattern are
added to the deployable archive and subfolders of the given path are not processed recursively.
For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and subfolders under ./
testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the deployable archive
and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at the time of
compilation, a path entry is added to the application's run-time path so that they appear on the
path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is preserved, with
some modifications, but relative to a subdirectory of the runtime cache directory, not to the user's
local folder. The cache directory is created from the deployable archive the first time the
application is executed. You can use the isdeployed function to determine whether the
application is being run in deployed mode, and adjust the path accordingly. The -a option also
creates a .auth file for authorization purposes.

 mcc

15-17

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other files from
that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications work without
any need to change the classpath as long as the Java class is not a member of a package. The
same applies for JAR files. However, if the class being added is a member of a package, the
MATLAB code needs to make an appropriate call to javaaddpath to update the classpath with
the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function interface to
the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic
code, this code allows the MATLAB function to be seen as a cell formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle can include
replacement parameters for compiler options that accept names and version numbers. See “Using
Bundles to Build MATLAB Code” (MATLAB Compiler SDK).

• -c

When used in conjunction with the -l option, suppresses compiling and linking of the generated C
wrapper code. The -c option cannot be used independently of the -l option.

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.
• -f

Override the default options file with the specified options file. It specifically applies to the C/C++
shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use different
ANSI compilers for different invocations of the compiler. This option is a direct pass-through to
mbuild.

15 Functions

15-18

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler SDK.
It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The
debug option lets you backtrace up to the point where you can identify if the failure occurred in
the initialization of MATLAB Runtime, the function call, or the termination routine. This option
does not let you debug your MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option appends the folder to the end
of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files, followed by
directory2. This option is important for standalone compilation where the MATLAB path is not
available.

If used in conjunction with the -N option, the -I option adds the folder to the compilation path in
the same position where it appeared in the MATLAB path rather than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to execute
successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for defining compile-
time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.
• -n

The -n option automatically identifies numeric command line inputs and treats them as MATLAB
doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is subject to
change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler

 mcc

15-19

• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at compile time.
Including -N on the command line lets you replace folders from the original path, while retaining
the relative ordering of the included folders. All subfolders of the included folders that appear on
the original path are also included. In addition, the -N option retains all folders that you included
on the path that are not under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is placed at the
head of the compilation path. Use the –p option to conditionally include folders and their
subfolders; if they are present in the MATLAB path, they appear in the compilation path in the
same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-dependent
extension is added to the specified name (for example, .exe for Windows standalone
applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under matlabroot
\toolbox to the compilation MATLAB path. The files are added in the same order in which they
appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and all its
subfolders that appear on the original path are added to the compilation path in the same
order.

• If a folder is included with -p that is not on the original MATLAB path, that folder is ignored.
(You can use -I to force its inclusion.)

• -R

Provide MATLAB Runtime options. This option is relevant only when building standalone
applications using MATLAB Compiler. The syntax is as follows:

-R option

Option Description Target
-
logfile,
filename

Specify a log file name. MATLAB Compiler

-
nodispla
y

Suppress the MATLAB nodisplay run-time
warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler

15 Functions

15-20

Option Description Target
-
startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler Standalone
Applications

-
complete
msg

Customizable user message displayed when
initialization is complete.

MATLAB Compiler Standalone
Applications

Caution When running on Mac OS X, if you use -nodisplay as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must occur before
calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK, mcc still
compiles without errors and generates the results. But the -R option doesn't apply to these
libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets its own
MATLAB Runtime context. The context includes a global MATLAB workspace for variables, such
as the path and a base workspace for each function in the class. If multiple instances of a class are
created, each instance gets an independent context. This ensures that changes made to the global
or base workspace in one instance of the class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple instances of
a class are created, they use the context created by the first instance which saves startup time and
some resources. However, any changes made to the global workspace or the base workspace by
one instance impacts all class instances. For example, if instance1 creates a global variable A in
a singleton MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....
Excel add-in Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
.NET assembly Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
COM component • Using the Library Compiler app, click Settings

and add -S to the Additional parameters
passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

 mcc

15-21

Target Description
compile:exe Generate a C/C++ wrapper file, and compile

C/C++ files to an object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a shared library or DLL.

link:exe Same as compile:exe and also link object
files into a standalone application.

link:lib Same as compile:lib and also link object
files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The argument
applies only to the generic COM component and Microsoft Excel add-in targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List the compile-time warnings that have abbreviated

identifiers, together with their status.
-w enable Enable all compile-time warnings.
-w disable[:<string>] Disable specific compile-time warnings associated with

<string>. Omit the optional <string> to apply the
disable action to all compile-time warnings.

-w enable[:<string>] Enable specific compile-time warnings associated with
<string>. Omit the optional <string> to apply the
enable action to all compile-time warnings.

15 Functions

15-22

Syntax Description
-w error[:<string>] Treat specific compile-time warnings associated with

<string> as an error. Omit the optional <string> to
apply the error action to all compile-time warnings.

-w off[:<string>] Turn off warnings for specific error messages defined by
<string>. Omit the optional <string> to apply the off
action to all runtime warnings.

-w on[:<string>] Turn on runtime warnings associated with <string>.
Omit the optional <string> to apply the on action to all
runtime warnings.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using isdeployed) in
startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
 warning on
end

You can also specify multiple -w options.

For example, if you want to disable all warnings except repeated_file, you write:

-w disable -w enable:repeated_file

When you specify multiple -w options, they are processed from left to right.
• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files generated by the
compiler. You provide a list of functions, and the compiler generates the wrapper functions and
any appropriate global variable definitions.

• -X

Use -X to ignore data files read by common MATLAB file I/O functions during dependency
analysis. For a list of MATLAB file I/O functions whose data files are ignored when you use the -X
option, see “App Packaging Dependency Analysis” (MATLAB). For details on how to use -X option,
see %#exclude.

• -Y

Use

 -Y license.lic

 mcc

15-23

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

Tips
• On Windows, you can generate a system-level file version number for your target file by appending

version=version_number to the target generating mcc syntax. For an example, see “Create a
standalone application with a system-level file version number (Windows only)” on page 15-15.

version_number — Specifies the version of the target file as major.minor.bug.build in the
file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number, by default, to 1.0.0.0.

• major — Specifies the major version number. If you do not specify a version number, mcc sets
major to 1.

• minor — Specifies the minor version number. If you do not specify a version number, mcc sets
minor to 0.

• bug — Specifies the bug fix maintenance release number. If you do not specify a version
number, mcc sets bug to 0.

• build — Specifies build number. If you do not specify a version number, mcc sets build to 0.

This functionality is supported for standalone applications and Excel add-ins in MATLAB Compiler.
For supported targets in MATLAB Compiler SDK, see the Tips section in mcc.

See Also

Introduced before R2006a

15 Functions

15-24

mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding to current
platform

Syntax
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller;

Description
Displays information about available MATLAB Runtime installers using the format:
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current platform.
• MAJOR is the major version number of the installer.
• MINOR is the minor version number of the installer.
• PLATFORM is the name of the current platform (returned by COMPUTER(arch)).

If no MATLAB Runtime installer is found, you are prompted to download an installer using the
command compiler.runtime.download.

Note You must distribute the MATLAB Runtime library to your end users to enable them to run
applications developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install and Configure the MATLAB Runtime” (MATLAB Compiler SDK)for more information
about the MATLAB Runtime installer.

Examples
Find MATLAB Runtime Installer Location

Display the location of MATLAB Runtime installers for a particular platform. This example shows
output for a win64 system. The release number is called R20xxx indicating the release for which the
MATLAB Runtime installer has been downloaded.

mcrinstaller

C:\Program Files\MATLAB\R20xxx\toolbox\compiler\deploy\win64\MCR_R20xxx_win64_installer.exe

For example, for R2018b, the path would be:

C:\Program Files\MATLAB\R2018b\toolbox\compiler\deploy\win64\MCR_R2018b_win64_installer.exe

Introduced in R2009a

 mcrinstaller

15-25

mcrversion
Determine version of installed MATLAB Runtime

Syntax
[major, minor] = mcrversion;

Description
The MATLAB Runtime version number consists of two digits, separated by a decimal point. This
function returns each digit as a separate output variable: [major, minor] = mcrversion; Major
and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more outputs, as
follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples
mcrversion
ans =
 7

Introduced in R2008a

15 Functions

15-26

setmcruserdata
Associate MATLAB data value with a key

Syntax
void setmcruserdata(key, value)

Description
void setmcruserdata(key, value) associates the MATLAB data value with the string key in
the current MATLAB Runtime instance. If there is already a value associated with the key, it is
overwritten.

This function is part of the MATLAB Runtime User Data interface API. It is available both in MATLAB
and in deployed applications created with MATLAB Compiler and MATLAB Compiler SDK.

Examples
Store a cell array and associate it with the string 'PI_Data' in the current instance of the MATLAB
Runtime.

value = {3.14159, 'March 14th is PI day'};
setmcruserdata('PI_Data', value);

Input Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

Value is the MATLAB data associated with input string key for the current instance of the MATLAB
Runtime.

key — Key associated with MATLAB data
string

key is a MATLAB string with which MATLAB data value is associated within the current instance of
the MATLAB Runtime.

See Also
getmcruserdata

Introduced in R2008a

 setmcruserdata

15-27

compiler.runtime.download
Download MATLAB Runtime installer

Syntax
compiler.runtime.download

Description
compiler.runtime.download downloads the MATLAB Runtime installer matching the version and
update level of MATLAB from where the command is executed. If the installer has already been
downloaded to the machine, it returns a message stating that the MATLAB Runtime installer exists
and specifies its location.

Examples

Download the MATLAB Runtime Installer

compiler.runtime.download

Downloading MATLAB Runtime installer. It may take several minutes...

MATLAB Runtime installer has been downloaded to:
 "C:\Users\username\AppData\Local\Temp\username\MCRInstaller9.4\MCR_R2018a_win64_installer.exe"

Location of MATLAB Runtime Installer

If you already have downloaded the latest version of the MATLAB Runtime installer, this command
gives following result on Windows:

compiler.runtime.download

An existing MATLAB Runtime installer was found at:
 "C:\Users\username\AppData\Local\Temp\username\MCRInstaller9.4\MCR_R2018a_win64_installer.exe"

See Also
mcrinstaller | mcrversion

Introduced in R2018a

15 Functions

15-28

compiler.package.installer
Create an installer for files generated by the mcc command

Syntax
compiler.package.installer(files,filePath,'ApplicationName',appName)
compiler.package.installer(files,filePath,'ApplicationName',appName,
Name,Value)
compiler.package.installer(files,filePath,'Options',opts)

Description
compiler.package.installer(files,filePath,'ApplicationName',appName) creates an
installer for files generated by the mcc command. The installed application's name is specified by
appName. The installer's extension is determined by the operating system you are running the
function from.

compiler.package.installer(files,filePath,'ApplicationName',appName,
Name,Value) creates an installer for files generated by the mcc command. The installed
application's name is specified by appName. The installer can be customized using optional name-
value pairs.

compiler.package.installer(files,filePath,'Options',opts) creates an installer for
files generated by the mcc command with installer options specified by an InstallerOptions
object opts. If you use an InstallerOptions object, you cannot specify any other options using
name-value pairs.

Examples

Create an Installer

Create an installer for a standalone application on a Windows system.

Write a MATLAB function that generates a magic square. Save the function in a file named
mymagic.m.

function out = mymagic(in)
out = magic(in)

Build a standalone application using the mcc command.

mcc -m mymagic.m

mymagic.exe
mccExcludedFiles.log
readme.txt
requiredMCRProducts.txt

Create an installer for the standalone application using the compiler.package.installer
function.

 compiler.package.installer

15-29

compiler.package.installer(...
 'mymagic.exe','D:\Documents\MATLAB\work\MagicSquare\requiredMCRProducts.txt',...
 'ApplicationName','MagicSquare_Generator')

This generates an installer named MyAppInstaller.exe within a folder named
MagicSquare_Generator.

Customize an Installer Using Name-Value Pairs

Customize an installer for a standalone application on a Windows system using name-value pairs.
compiler.package.installer('mymagic.exe','requiredMCRProducts.txt',...
 'ApplicationName','MagicSquare_Generator',...
 'AuthorCompany','Boston Common',...
 'AuthorName','Frog',...
 'InstallerName','MagicSquare_Installer',...
 'Summary','Generates a magic square.')

Customize an Installer Using an Installer Options Object

Customize an installer for a standalone application on a Windows system using an
InstallerOptions object.

Create an InstallerOptions object.
opts = compiler.package.InstallerOptions('ApplicationName','MagicSquare_Generator',...
 'AuthorCompany','Boston Common',...
 'AuthorName','Frog',...
 'InstallerName','MagicSquare_Installer',...
 'Summary','Generates a magic square.')

opts =

 InstallerOptions with properties:

 RuntimeDelivery: 'web'
 InstallerSplash: 'C:\Program Files\MATLAB\R2020a\toolbox\toolbox\compiler\resources\default_splash.png'
 InstallerIcon: 'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_icon_48.png'
 InstallerLogo: 'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_logo.png'
 AuthorName: 'Frog'
 AuthorEmail: ''
 AuthorCompany: 'Boston Common'
 Summary: 'Generates a magic square.'
 Description: ''
 InstallationNotes: ''
 Shortcut: ''
 Version: '1.0'
 InstallerName: 'MagicSquare_Installer'
 ApplicationName: 'MagicSquare_Generator'
 OutputDir: '.\MagicSquare_Generator'
 DefaultInstallationDir: 'C:\Program Files\MagicSquare_Generator'

Pass the InstallerOptions object as an input to the function.

15 Functions

15-30

compiler.package.installer('mymagic.exe','requiredMCRProducts.txt','Options',opts)

Input Arguments
files — List of files and folders for installation
character vector | string scalar | cell array of character vectors | string array

List of files and folders for installation, specified as a character vector, a string scalar, a cell array of
character vectors, or a string array. These files are typically generated by the mcc command and can
also include any additional files and folders required by the installed application to run.

• Files generated by the mcc command in a particular release can be packaged using the
compiler.package.installer function of the same release.

• Files of type .ctf generated by the mcc command on one operating system, can be packaged
using the compiler.package.installer function on a different operating system, as long as
the mcc command and the compiler.package.installer function are from the same release.

Example: 'mymagic.exe'
Data Types: char | string

filePath — Path to requiredMCRProducts.txt file
character vector | string scalar

Path to the requiredMCRProducts.txt file generated by the mcc command.
Example: 'D:\Documents\MATLAB\work\MagicSquare\requiredMCRProducts.txt'
Data Types: char | string

appName — Name of the installed application
character vector | string scalar

Name of the installed application, specified as a character vector or a string scalar.
Example: 'MagicSquare_Generator'
Data Types: char | string

opts — Installer options object
InstallerOptions object

Installer options, specified as an InstallerOptions object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

AuthorCompany — Company name
'' (default) | character vector | string scalar

Name of company that created the application, specified as a character vector or a string scalar.
Example: 'Boston Common'
Data Types: char | string

 compiler.package.installer

15-31

AuthorEmail — Email address
'' (default) | character vector | string scalar

Email address of the application author, specified as a character vector or a string scalar.
Example: 'frog@bostoncommon.com'
Data Types: char | string

AuthorName — Name
'' (default) | character vector | string scalar

Name of application author, specified as a character vector or a string scalar.
Example: 'Frog'
Data Types: char | string

DefaultInstallationDir — Default installation path
character vector | string scalar

Default directory where you want the installer to install the application, specified as a character
vector or a string scalar.

If no path is specified, the default path for each operating system is:

Operating System Default Installation Directory
Windows C:\Program Files\appName
Linux /usr/appName
macOS /Applications/appName

Example: On Windows: C:\Program Files\MagicSquare_Generator
Data Types: char | string

Description — Detailed application description
'' (default) | character vector | string scalar

Detailed description of the application, specified as a character vector or a string scalar.
Example: 'The MagicSquare_Generator application generates an n-by-n matrix
constructed from the integers 1 through n2 with equal row and column sums.'

Data Types: char | string

InstallationNotes — Notes
'' (default) | character vector | string scalar

Notes about additional requirements for using application, specified as a character vector or a string
scalar.
Example: 'This is a Linux installer.'
Data Types: char | string

InstallerIcon — Path to icon image
character vector | string scalar

15 Functions

15-32

Path to an image file used as the icon for the installed application, specified as a character vector or a
string scalar.

The default path is:

'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_icon_48.png'

Example: 'D:\Documents\MATLAB\work\images\myIcon.png'

InstallerLogo — Path to installer image
character vector | string scalar

Path to an image file used as the installer's logo, specified as a character vector or a string scalar. The
logo will be resized to 150 pixels by 340 pixels.

The default path is:

'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_logo.png'

Example: 'D:\Documents\MATLAB\work\images\myLogo.png'

InstallerName — Name of installer file
MyAppInstaller (default) | character vector | string scalar

Name of the installer file, specified as a character vector or a string scalar. The extension is
determined by the operating system in which the function is executed.
Example: 'MagicSquare_Installer'

InstallerSplash — Path to splash screen image
character vector | string scalar

Path to an image file used as the installer's splash screen, specified as a character vector or a string
scalar. The splash screen icon will be resized to 400 pixels by 400 pixels.

The default path is:

'C:\Program Files\MATLAB\R2020a\toolbox\toolbox\compiler\resources\default_splash.png'

Example: 'D:\Documents\MATLAB\work\images\mySplash.png'

OutputDir — Path to folder where the installer will be saved
character vector | string scalar

Path to folder where the installer is saved, specified as a character vector or a string scalar.

If no path is specified, the default path for each operating system is:

Operating System Default Installation Directory
Windows .\appName
Linux ./appName
macOS ./appName

The . in the directories listed above represents the present working directory.
Example: 'D:\Documents\MATLAB\work\MagicSquare'

 compiler.package.installer

15-33

RuntimeDelivery — MATLAB Runtime delivery option
'web' (default) | 'installer'

Choice on how the MATLAB Runtime is made available to the installed application.

• 'web'—Option for installer to download MATLAB Runtime from MathWorks website during
application installation. This is the default option.

• 'installer'—Option to include MATLAB Runtime within the installer so that it can be installed
during application installation without connecting to the MathWorks website. Use this option if
you think your end-user may not have access to the Internet.

Example: 'installer'
Data Types: char | string

Shortcut — Path to shortcut
'' (default) | character vector | string scalar

Path to a file or folder that the installer will create a shortcut to at install time, specified as a
character vector or a string scalar.
Example: '.\mymagic.exe'
Data Types: char | string

Summary — Brief description of application
'' (default) | character vector | string scalar

Summary description of the application, specified as a character vector or a string scalar.
Example: 'Generates a magic square.'
Data Types: char | string

Version — Version of installed application
'1.0' (default) | character vector | string scalar

Version number of the generated application, specified as a character vector or a string scalar.
Example: '2.0'
Data Types: char | string

See Also
compiler.package.InstallerOptions | mcc

Introduced in R2020a

15 Functions

15-34

compiler.package.InstallerOptions
Create an installer options object

Syntax
opts = compiler.package.InstallerOptions('ApplicationName',appName)
opts = compiler.package.InstallerOptions('ApplicationName',appName,
Name,Value)

Description
opts = compiler.package.InstallerOptions('ApplicationName',appName) creates a
default InstallerOptions object opts with application name specified by appName. The
InstallerOptions object is passed as an input to the compiler.package.installer function.

opts = compiler.package.InstallerOptions('ApplicationName',appName,
Name,Value) creates an InstallerOptions object opts with application name specified by
appName and additional customizations specified by name-value pairs. The InstallerOptions
object is passed as an input to the compiler.package.installer function.

Examples

Create an Installer Options Object

Create an InstallerOptions object with an application name and additional options specified as
name-value pairs.

opts = compiler.package.InstallerOptions('ApplicationName','MagicSquare_Generator',...
 'AuthorCompany','Boston Common',...
 'AuthorName','Frog',...
 'InstallerName','MagicSquare_Installer',...
 'Summary','Generates a magic square.')

opts =

 InstallerOptions with properties:

 RuntimeDelivery: 'web'
 InstallerSplash: 'C:\Program Files\MATLAB\R2020a\toolbox\toolbox\compiler\resources\default_splash.png'
 InstallerIcon: 'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_icon_48.png'
 InstallerLogo: 'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_logo.png'
 AuthorName: 'Frog'
 AuthorEmail: ''
 AuthorCompany: 'Boston Common'
 Summary: 'Generates a magic square.'
 Description: ''
 InstallationNotes: ''
 Shortcut: ''
 Version: '1.0'
 InstallerName: 'MagicSquare_Installer'
 ApplicationName: 'MagicSquare_Generator'

 compiler.package.InstallerOptions

15-35

 OutputDir: '.\MagicSquare_Generator'
 DefaultInstallationDir: 'C:\Program Files\MagicSquare_Generator'

You can modify options using dot notation. For example, set the installation notes to Windows
installer.

opts.InstallationNotes = 'Windows installer'

Input Arguments
appName — Name of the installed application
character vector | string scalar

Name of the installed application, specified as a character vector or a string scalar.
Example: 'MagicSquare_Generator'
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

AuthorCompany — Company name
'' (default) | character vector | string scalar

Name of company that created the application, specified as a character vector or a string scalar.
Example: 'Boston Common'
Data Types: char | string

AuthorEmail — Email address
'' (default) | character vector | string scalar

Email address of the application author, specified as a character vector or a string scalar.
Example: 'frog@bostoncommon.com'
Data Types: char | string

AuthorName — Name
'' (default) | character vector | string scalar

Name of application author, specified as a character vector or a string scalar.
Example: 'Frog'
Data Types: char | string

DefaultInstallationDir — Default installation path
character vector | string scalar

Default directory where you want the installer to install the application, specified as a character
vector or a string scalar.

If no path is specified, the default path for each operating system is:

15 Functions

15-36

Operating System Default Installation Directory
Windows C:\Program Files\appName
Linux /usr/appName
macOS /Applications/appName

Example: On Windows: C:\Program Files\MagicSquare_Generator
Data Types: char | string

Description — Detailed application description
'' (default) | character vector | string scalar

Detailed description of the application, specified as a character vector or a string scalar.
Example: 'The MagicSquare_Generator application generates an n-by-n matrix
constructed from the integers 1 through n2 with equal row and column sums.'

Data Types: char | string

InstallationNotes — Notes
'' (default) | character vector | string scalar

Notes about additional requirements for using application, specified as a character vector or a string
scalar.
Example: 'This is a Linux installer.'
Data Types: char | string

InstallerIcon — Path to icon image
character vector | string scalar

Path to an image file used as the icon for the installed application, specified as a character vector or a
string scalar.

The default path is:

'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_icon_48.png'

Example: 'D:\Documents\MATLAB\work\images\myIcon.png'

InstallerLogo — Path to installer image
character vector | string scalar

Path to an image file used as the installer's logo, specified as a character vector or a string scalar. The
logo will be resized to 150 pixels by 340 pixels.

The default path is:

'C:\Program Files\MATLAB\R2020a\toolbox\compiler\resources\default_logo.png'

Example: 'D:\Documents\MATLAB\work\images\myLogo.png'

InstallerName — Name of installer file
MyAppInstaller (default) | character vector | string scalar

 compiler.package.InstallerOptions

15-37

Name of the installer file, specified as a character vector or a string scalar. The extension is
determined by the operating system in which the function is executed.
Example: 'MagicSquare_Installer'

InstallerSplash — Path to splash screen image
character vector | string scalar

Path to an image file used as the installer's splash screen, specified as a character vector or a string
scalar. The splash screen icon will be resized to 400 pixels by 400 pixels.

The default path is:

'C:\Program Files\MATLAB\R2020a\toolbox\toolbox\compiler\resources\default_splash.png'

Example: 'D:\Documents\MATLAB\work\images\mySplash.png'

OutputDir — Path to folder where the installer will be saved
character vector | string scalar

Path to folder where the installer is saved, specified as a character vector or a string scalar.

If no path is specified, the default path for each operating system is:

Operating System Default Installation Directory
Windows .\appName
Linux ./appName
macOS ./appName

The . in the directories listed above represents the present working directory.
Example: 'D:\Documents\MATLAB\work\MagicSquare'

RuntimeDelivery — MATLAB Runtime delivery option
'web' (default) | 'installer'

Choice on how the MATLAB Runtime is made available to the installed application.

• 'web'—Option for installer to download MATLAB Runtime from MathWorks website during
application installation. This is the default option.

• 'installer'—Option to include MATLAB Runtime within the installer so that it can be installed
during application installation without connecting to the MathWorks website. Use this option if
you think your end-user may not have access to the Internet.

Example: 'installer'
Data Types: char | string

Shortcut — Path to shortcut
'' (default) | character vector | string scalar

Path to a file or folder that the installer will create a shortcut to at install time, specified as a
character vector or a string scalar.
Example: '.\mymagic.exe'

15 Functions

15-38

Data Types: char | string

Summary — Brief description of application
'' (default) | character vector | string scalar

Summary description of the application, specified as a character vector or a string scalar.
Example: 'Generates a magic square.'
Data Types: char | string

Version — Version of installed application
'1.0' (default) | character vector | string scalar

Version number of the generated application, specified as a character vector or a string scalar.
Example: '2.0'
Data Types: char | string

Output Arguments
opts — Installer options object
InstallerOptions object

Installer options, returned as an InstallerOptions object.

See Also
compiler.package.installer | mcc

Introduced in R2020a

 compiler.package.InstallerOptions

15-39

MATLAB Compiler Quick Reference

A

mcc Command Arguments Listed Alphabetically
Option Description Comment
-a path Add path to the deployable

archive.
If a folder name is specified, all files in the
folder are added. If a wildcard is used all files
matching the wildcard are added.

-b Generate Excel compatible
formula function.

Requires MATLAB Compiler for Excel add-ins

-B
filename[:arg[,arg]]

Replace -B filename on the mcc
command line with the contents of
filename.

The file should contain only mcc command-line
options. These are MathWorks included
options files:

• -B csharedlib:foo (C shared library)
• -B cpplib:foo (C++ library)

-c Generate C wrapper code. Equivalent to -T codegen
-C Direct mcc to not embed the

deployable archive in generated
binaries.

-d directory Place output in specified folder.
-e Suppresses appearance of the MS-

DOS Command Window when
generating a standalone
application.

Use -e in place of the -m option. Available for
Windows only. Use with -R option to generate
error logging. Equivalent to -W WinMain -T
link:exe

The standalone app compiler suppresses the
MS-DOS command window by default. To
unsuppress it, unselect Do not require
Windows Command Shell (console) for
execution in the app’s Additional Runtime
Settings area.

-f filename Use the specified options file,
filename, when calling mbuild.

mbuild -setup is recommended.

-g Generate debugging information. None
-G Same as -g None
-I directory Add folder to search path for

MATLAB files.

-K Directs mcc to not delete output
files if the compilation ends
prematurely, due to error.

mcc's default behavior is to dispose of any
partial output if the command fails to execute
successfully.

-l Macro to create a function library. Equivalent to -W lib -T link:lib
-m Macro to generate a standalone

application.
Equivalent to -W main -T link:exe

-M string Pass string to mbuild. Use to define compile-time options.
-N Clear the path of all but a minimal,

required set of folders.
None

A mcc Command Arguments Listed Alphabetically

A-2

Option Description Comment
-o outputfile Specify name of final output file. Adds appropriate extension
-p directory Add directory to compilation

path in an order-sensitive context.
Requires -N option

-R option Specify run-time options for
MATLAB Runtime.

option = -nojvm, -nodisplay, -logfile
filename, -startmsg, and -completemsg
filename

-S Create Singleton MATLAB
Runtime.

Default for generic COM components. Valid for
Microsoft Excel and Java packages.

-T Specify the output target phase
and type.

Default is codegen.

-u Registers COM component for
current user only on development
machine

Valid only for generic COM components and
Microsoft Excel add-ins

-v Verbose; display compilation steps.
-w option Display warning messages. option = list, level, or level:string

where

level = disable, enable, error, off:string, or
on:string

-W type Control the generation of function
wrappers.

type = main cpplib:<string>
lib:<string> none
com:compname,clname,version

-Y licensefile Use licensefile when checking
out a MATLAB Compiler license.

The -Y flag works only with the command-line
mode.

>>!mcc -m foo.m -Y license.lic

-? Display help message.

 mcc Command Arguments Listed Alphabetically

A-3

mcc Command Line Arguments Grouped by Task
COM Components

Option Description Comment
-u Registers COM component for

current user only on
development machine

Valid only for generic COM
components and Microsoft Excel
add-ins (requiring MATLAB
Compiler)

Deployable Archive

Option Description Comment
-a filename Add filename to the

deployable archive.
None

-C Directs mcc to not embed the
deployable archive in C/C++
and main/Winmain shared
libraries and standalone
binaries by default.

None

Debugging

Option Description Comment
-g Generate debugging

information.
None

-G Same as -g None
-K Directs mcc to not delete output

files if the compilation ends
prematurely, due to error.

mcc's default behavior is to
dispose of any partial output if
the command fails to execute
successfully.

-v Verbose; display compilation
steps.

None

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string> none
com:compname,clname,vers
ion

-? Display help message. None

Dependency Function Processing

Option Description Comment
-a filename Add filename to the

deployable archive.
None

A mcc Command Line Arguments Grouped by Task

A-4

Licenses

Option Description Comment
-Y licensefile Use licensefile when

checking out a MATLAB
Compiler license.

The -Y flag works only with the
command-line mode.

>>!mcc -m foo.m -Y license.lic

MATLAB Compiler for Excel Add-Ins

Option Description Comment
-b Generate Excel compatible

formula function.
Requires MATLAB Compiler

-u Registers COM component for
current user only on
development machine

Valid only for generic COM
components and Microsoft Excel
add-ins (requiring MATLAB
Compiler)

MATLAB Path

Option Description Comment
-I directory Add folder to search path for

MATLAB files.
MATLAB path is automatically
included when running from
MATLAB, but not when running
from a DOS/UNIX shell.

-N Clear the path of all but a
minimal, required set of folders.

None

-p directory Add directory to compilation
path in an order-sensitive
context.

Requires -N option

mbuild

Option Description Comment
-f filename Use the specified options file,

filename, when calling
mbuild.

mbuild -setup is
recommended.

-M string Pass string to mbuild. Use to define compile-time
options.

MATLAB Runtime

Option Description Comment
-R option Specify run-time options for

MATLAB Runtime.
option = -nojvm -
nodisplay-logfile
filename-startmsg -
completemsg filename

-S Create Singleton MATLAB
Runtime.

Default for generic COM
components. Valid for Microsoft
Excel and Java packages.

 mcc Command Line Arguments Grouped by Task

A-5

Override Default Inputs

Option Description Comment
-B filename[:arg[,arg]] Replace -B filename on the

mcc command line with the
contents of filename (bundle).

The file should contain only mcc
command-line options. These
are MathWorks included options
files:

• -B csharedlib:foo — C
shared library

• -B cpplib:foo — C++
library

Override Default Outputs

Option Description Comment
-d directory Place output in specified folder. None
-o outputfile Specify name of final output file. Adds appropriate extension
-e Suppresses appearance of the

MS-DOS Command Window
when generating a standalone
application.

Use -e in place of the -m option.
Available for Windows only. Use
with -R option to generate error
logging. Equivalent to -W
WinMain -T link:exe

The standalone app compiler
suppresses the MS-DOS
command window by default. To
unsuppress it, unselect Do not
require Windows Command
Shell (console) for execution
in the app’s Additional
Runtime Settings area.

Wrappers and Libraries

Option Description Comment
-c Generate C wrapper code. Equivalent to -T codegen
-l Macro to create a function

library.
Equivalent to -W lib -T
link:lib

-m Macro to generate a standalone
application.

Equivalent to -W main -T
link:exe

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string> none
com:compname,clname,vers
ion

A mcc Command Line Arguments Grouped by Task

A-6

Using MATLAB Compiler on Mac or Linux

B

Problems Setting MATLAB Runtime Paths

In this section...
“Running SETENV on Mac Failed” on page B-2
“Mac Application Fails with “Library not loaded” or “Image not found”” on page B-2

When you build applications, associated shell scripts (run_application.sh) are automatically
generated in the same folder as your binary. By running these scripts, you can conveniently set the
path to your MATLAB Runtime location.

Running SETENV on Mac Failed
If the setenv command fails with a message similar to setenv: command not found or setenv:
not found, you are not using a C Shell command interpreter (such as csh or tcsh).

Set the environment variables using the export command using the format export
my_variable=my_value.

For example, to set DYLD_LIBRARY_PATH, run the following command:

export DYLD_LIBRARY_PATH=mcr_root/v98/runtime/maci64:mcr_root/ ...

Mac Application Fails with “Library not loaded” or “Image not found”
If you set your environment variables, you may still receive the following message when you run your
application:

dyld: Library not loaded: @rpath/libmwlaunchermain.dylib
Referenced from: /Applications/magicsquare/application/
magicsquare.app/Contents/MacOS/magicsquare
 Reason: image not found
Trace/BPT trap: 5

You may have set your environment variables initially, but they were not set up as persistent
variables. Do the following:

1 In your home directory, open a file such as .bashrc or .profile file in your log-in shell.
2 In either of these types of log-in shell files, add commands to set your environment variables so

that they persist. For example, to set DYLD_LIBRARY_PATH in this manner, you enter the
following in your file:

Setting PATH for MCR

DYLD_LIBRARY_PATH=MCR_ROOT/v98/runtime/maci64:
MCR_ROOT/v98/sys/os/maci64:
MCR_ROOT/v98/bin/maci64
export DYLD_LIBRARY_PATH

?

B Problems Setting MATLAB Runtime Paths

B-2

Note The DYLD_LIBRARY_PATH= statement is one statement that must be entered as a single
line. The statement is shown on different lines, in this example, for readability only.

 Problems Setting MATLAB Runtime Paths

B-3

Apps

16

Application Compiler
Package MATLAB programs for deployment as standalone applications

Description
The Application Compiler app packages MATLAB programs into applications that can run outside
of MATLAB.

Open the Application Compiler App
• MATLAB toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter applicationCompiler.

Examples
• “Create Standalone Application from MATLAB” on page 1-5

Parameters
main file — name of the function to package
character vector

Name of the function to package as a character vector. The selected function is the entry point for the
packaged application.

packaging options — method for installing the MATLAB Runtime with the packaged
application
MATLAB Runtime downloaded from web (default) | MATLAB Runtime included in package

You can decide whether to include the MATLAB Runtime fallback for MATLAB Runtime installer in
the generated application by selecting one of the two options in the Packaging Options section.
Including the MATLAB Runtime installer in the package significantly increases the size of the
package.

Runtime downloaded from web — Generates an installer that downloads the MATLAB Runtime and
installs it along with the deployed MATLAB application.

Runtime included in package — Generates an installer that includes the MATLAB Runtime installer.

The first time you select this option, you are prompted to download the MATLAB Runtime installer or
obtain a CD if you do not have internet access.

Files required for your application to run — files that must be included with
application
list of files

Files that must be included with application as a list of files.

16 Apps

16-2

Files installed for your end user — files installed on the end user's machine when
the application is installed
list of files

Optional files installed with application as a list of files.

Additional runtime settings — execution options for the application
check options

Check the appropriate boxes if you don't want a command window to show up during execution or if
you want a log file to be created.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

Testing Files — Folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

End User Files — Folder where files for building a custom installer are stored
character vector

Folder where files for building a custom installer are stored as a character vector.

Packaged Installers — Folder where generated installers are stored
character vector

Folder where generated installers are stored as a character vector.

Application information

Application Name — name of the installed application
character vector

Name of the installed application as a character vector.

For example, if the name is foo, the installed executable would be foo.exe, the start menu entry
would be foo. The folder created for the application would be InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.

Version — version of the generated application
character vector

Version of the generated application as a character vector.

splash screen — image displayed on installer
image

Image displayed on installer as an image.

 Application Compiler

16-3

Author Name — name of the application author
character vector

Name of the application author as a character vector.

Email — Email address used to contact application support
character vector

Email address used to contact application support as a character vector.

Summary — brief description of application
character vector

Brief description of application as a character vector.

Description — detailed description of application
character vector

Detailed description of application as a character vector.

Additional installer options

Default installation folder — Folder where application is installed
character vector

Folder where the application is installed as a character vector.

Installation notes — notes about additional requirements for using application
character vector

Notes about additional requirements for using application as a character vector.

Programmatic Use
applicationCompiler

See Also
Topics
“Create Standalone Application from MATLAB” on page 1-5

Introduced in R2013b

16 Apps

16-4

Hadoop Compiler
Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Note The Hadoop Compiler app will be removed in a future release. To create standalone
MATLAB® MapReduce applications, or deployable archives from MATLAB map and reduce functions,
use the mcc command. For details, see “Compatibility Considerations”.

Description
The Hadoop Compiler app packages MATLAB map and reduce functions into a deployable archive.
You can incorporate the archive into a Hadoop mapreduce job by passing it as a payload argument to
job submitted to a Hadoop cluster.

Open the Hadoop Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter hadoopCompiler.

Parameters
map function — mapper file
character vector

Function for the mapper, specified as a character vector.

reduce function — reducer file
character vector

Function for the reducer, specified as a character vector.

datastore file — file containing a datastore representing the data to be processed
character vector

A file containing a datastore representing the data to be processed, specified as a character vector.

In most cases, you will start off by working on a small sample dataset residing on a local machine that
is representative of the actual dataset on the cluster. This sample dataset has the same structure and
variables as the actual dataset on the cluster. By creating a datastore object to the dataset residing
on your local machine you are taking a snapshot of that structure. By having access to this datastore
object, a Hadoop job executing on the cluster will know how to access and process the actual dataset
residing on HDFS™.

output types — format of output
keyvalue (default) | tabulartext

Format of output from Hadoop mapreduce job, specified as a keyvalue or tabular text.

 Hadoop Compiler

16-5

additional configuration file content — additional parameters configuring how
Hadoop executes the job
character vector

Additional parameters to configure how Hadoop executes the job, specified as a character vector. For
more information, see “Configuration File for Creating Deployable Archive Using the mcc Command”.

files required for your MapReduce job payload to run — files that must be included
with generated artifacts
list of files

Files that must be included with generated artifacts, specified as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler, specified as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored, specified as a character vector.

packaged files — folder where generated artifacts are stored
character vector

Folder where generated artifacts are stored, specified as a character vector.

Compatibility Considerations
Hadoop Compiler will be removed
Not recommended starting in R2020a

Hadoop Compiler app will be removed in a future release. To create standalone MATLAB
MapReduce applications, or deployable archives from MATLAB map and reduce functions, use the
mcc command.

Introduced in R2014b

16 Apps

16-6

	Getting Started
	MATLAB Compiler Product Description
	Appropriate Tasks for MATLAB Compiler Products
	Create Standalone Application from MATLAB
	Create Function in MATLAB
	Create Standalone Application Using Application Compiler App
	Install and Run MATLAB Generated Standalone Application

	MATLAB Runtime Additional Info
	Differences Between MATLAB and MATLAB Runtime
	Performance Considerations and the MATLAB Runtime

	Deploying Standalone Applications
	Create Standalone Application from Command Line
	Execute Compiler Projects with deploytool
	Create Standalone Application with mcc
	Run MATLAB Generated Standalone Application
	Differences Between Compiler Apps and Command Line

	Standalone Applications and Arguments
	Overview
	Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables
	Run Standalone Applications that Use Arguments

	Use Parallel Computing Toolbox in Deployed Applications
	Pass Parallel Computing Toolbox Profile at Run Time
	Embed Parallel Computing Toolbox Profile

	Integrate Application with Mac OS X Finder
	Overview
	Installing the Mac Application Launcher Preference Pane
	Configuring the Installation Area
	Running the Application

	Files Generated After Packaging MATLAB Functions
	for_redistribution Folder
	for_redistribution_files_only Folder
	for_testing Folder

	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Determine Data Type of Command-Line Input (For Packaging Standalone Applications Only)
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings

	Manage Support Packages
	Using a Compiler App
	Using the Command Line

	MATLAB Code Deployment
	How Does MATLAB Deploy Functions?
	Dependency Analysis
	Function Dependency
	Data File Dependency

	MEX-Files, DLLs, or Shared Libraries
	Deployable Archive
	Additional Details

	Write Deployable MATLAB Code
	Packaged Applications Do Not Process MATLAB Files at Run Time
	Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files
	Use isdeployed Functions To Execute Deployment-Specific Code Paths
	Gradually Refactor Applications That Depend on Noncompilable Functions
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	Calling Shared Libraries in Deployed Applications
	MATLAB Data Files in Compiled Applications
	Explicitly Including MATLAB Data files Using the %#function Pragma
	Load and Save Functions

	Standalone Application Creation
	Dependency Analysis Function and User Interaction with the Compilation Path
	addpath and rmpath in MATLAB
	Passing -I <directory> on the Command Line
	Passing -N and -p <directory> on the Command Line

	Deployment Process
	About the MATLAB Runtime
	How is the MATLAB Runtime Different from MATLAB?
	Performance Considerations and the MATLAB Runtime

	Install and Configure the MATLAB Runtime
	Download the MATLAB Runtime Installer from the Web
	Install the MATLAB Runtime Interactively
	Install the MATLAB Runtime Non-Interactively
	Install the MATLAB Runtime without Administrator Rights
	Multiple MATLAB Runtime Versions on Single Machine
	MATLAB and MATLAB Runtime on Same Machine
	Uninstall MATLAB Runtime

	Run Applications Using a Network Installation of MATLAB Runtime (Windows Only)
	MATLAB Runtime on Big Data Platforms
	Cloudera
	Apache Ambari
	Azure HDInsight

	Work with the MATLAB Runtime
	MATLAB Runtime Startup Options
	Set MATLAB Runtime Options

	Using the MATLAB Runtime User Data Interface
	MATLAB Functions
	Set and Retrieve MATLAB Runtime Data for Shared Libraries

	Display the MATLAB Runtime Initialization Messages
	Best Practices

	Distributing Code to an End User
	Distribute MATLAB Code Using the MATLAB Runtime
	MATLAB Runtime

	Compiler Commands
	Compiler Tips
	Deploying Applications That Call the Java Native Libraries
	Using the VER Function in a Compiled MATLAB Application

	Standalone Applications
	Deploying Standalone Applications
	Compiling the Application
	Testing the Application
	Deploying the Application
	Running the Application

	Troubleshooting
	Testing Failures
	Investigate Deployed Application Failures

	Limitations and Restrictions
	Limitations
	Packaging MATLAB and Toolboxes
	Fixing Callback Problems: Missing Functions
	Finding Missing Functions in a MATLAB File
	Suppressing Warnings on the UNIX System
	Cannot Use Graphics with the -nojvm Option
	Cannot Create the Output File
	No MATLAB File Help for Packaged Functions
	No MATLAB Runtime Versioning on Mac OS X
	Older Neural Networks Not Deployable with MATLAB Compiler
	Restrictions on Calling PRINTDLG with Multiple Arguments in Packaged Mode
	Packaging a Function with which Does Not Search Current Working Folder
	Restrictions on Using C++ SetData to Dynamically Resize an mwArray
	Accepted File Types for Packaging

	Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

	Reference Information
	MATLAB Runtime Path Settings for Run-Time Deployment
	General Path Guidelines
	Path for Java Applications on All Platforms
	Windows Path for Run-Time Deployment
	Linux Paths for Run-Time Deployment
	OS X Paths for Run-Time Deployment

	MATLAB Compiler Licensing
	Using MATLAB Compiler Licenses for Development

	Deployment Product Terms

	Functions
	%#exclude
	%#function
	applicationCompiler
	ctfroot
	deploytool
	getmcruserdata
	isdeployed
	ismcc
	libraryCompiler
	mcc
	mcrinstaller
	mcrversion
	setmcruserdata
	compiler.runtime.download
	compiler.package.installer
	compiler.package.InstallerOptions

	MATLAB Compiler Quick Reference
	mcc Command Arguments Listed Alphabetically
	mcc Command Line Arguments Grouped by Task

	Using MATLAB Compiler on Mac or Linux
	Problems Setting MATLAB Runtime Paths
	Running SETENV on Mac Failed
	Mac Application Fails with “Library not loaded” or “Image not found”

	Apps
	Application Compiler
	Hadoop Compiler

